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Abstract

Structured data has been a major component of web resources since the very beginning

of the web. Metadata that was originally mostly meant for display purposes gradually

expanded to incorporate the semantic content of a page. Until now semantic data on

the web has mostly focused on factual knowledge, namely trying to capture “what hu-

mans know”. This thesis instead focuses on procedural knowledge, or in other words,

“how humans do things”, and in particular on step-by-step instructions. I will present a

semantic framework to capture the meaning of sets of instructions with respect to their

potential execution. This framework is based on a logical model which I evaluated in

terms of its expressiveness and it compatibility with existing languages. I will show

how this type of procedural knowledge can be automatically acquired from human-

generated instructions on the web, while at the same time bridging the semantic gap,

from unstructured to structured, by mapping these resources into a formal process de-

scription language. I will demonstrate how procedural and factual data on the web can

be integrated automatically using Linked Data, and how this integration results in an

overall richer semantic representation. To validate these claims I have conducted large

scale knowledge acquisition and integration experiments on two prominent instruc-

tional websites and evaluated the results against a human benchmark. Finally, I will

demonstrate how existing web technologies allow for this data to seamlessly enrich

existing web resources and to be used on the web without the need for centralisation. I

have explored the potential uses of formalised instructions by the implementation and

testing of concrete prototypes which enable human users to explore know-how and

collaborate with machines in novel ways.
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Chapter 1

Introduction

Structured data has been a major component of web resources since the very beginning

of the web. Metadata that was originally mostly meant for display purposes, instruct-

ing Web browsers on how to visualise information, gradually expanded to incorporate

application logic for more dynamic and interactive pages. In recent years, metadata in

web resources started describing also the semantics of their content. This type of se-

mantic metadata is already being used for a large variety of applications, which range

from better indexing and retrieval of web documents,1 to semantic exploration of web

content, such as Google info-boxes, to populating databases of common sense know-

ledge, such as DBpedia (Auer et al. 2007).

Following Bellinger et al. (2004), I use the term ‘knowledge’ to refer to a more

understandable version of data. Knowledge can be seen as data that is organised ac-

cording to some known rules and patterns that allow us to infer new facts or make

predictions. For example, knowledge of the recipe for a certain dish typically allows

us to infer whether a certain set of ingredients are sufficient to prepare it.

Until now these semantic technologies have mostly focused on factual knowledge,

namely trying to capture what humans know. However, as noticed by Thimm et al.

(2012), there is a different class of knowledge that, despite being common on the web

and in our daily life, does not feature as often in this web of data. This class of know-

ledge, which will be the focus of this thesis, is know-how, or procedural knowledge,

which captures what humans do, and how. More specifically, I will use the terms

know-how and procedural knowledge interchangeably to refer to knowledge about how

humans do things that can be made explicit and communicated through language. Im-

plicit know-how, such as the motor skills required to ride a bicycle, is outside of the

1http://schema.org/ (accessed on 17/10/2017)
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Figure 1.1: Partial screenshot of a set of instructions on how to make pancakes.2

scope of this thesis.

Procedural knowledge is available on the web in many formats, such as text, images

and videos. In this thesis I will focus on textual instructions, one of the most common

formats used to share procedural knowledge online. Textual instructions can be seen as

descriptions in natural language that answer the question of how a certain task can be

accomplished. A concrete example of the type of instructions that this thesis will focus

on is displayed in Figure 1.1. While there is no universal way to represent instructions,

a number of common structures can be identified in this example. For example, this

2Screenshot taken from http://www.wikihow.com/Make-Pancakes on date 16/10/2017.
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set of instructions features a title, namely “How to Make Pancakes”, which describes

the main goal that the instructions are meant to achieve. Below this title we can notice

an ordered list of steps that details the actions that need to be performed and in which

order. For example, the set of instructions should begin with the step “Beat the eggs

until they turn creamy”. Finally, we can notice a set of requirements that are needed

by the set of instructions, such as the ingredient “2 or 3 eggs”.

1.1 Problem Statement

The central problem addressed in this thesis is the following: human instructions on

the web are not machine-understandable. In other words, these instructions are used as

knowledge by humans, but are currently only processed as data by machines. Recent

research efforts targeting human instructions, such as the works by Beetz et al. (2015)

and Kiddon et al. (2015), can be seen as evidence of the importance of this problem.

This problem significantly limits the support that machines can offer to users who

are interested in this type of knowledge. While a human can perform complex tasks

after learning the relevant know-how from a resource containing a set of instructions,

a machine given the same resource can typically only perform a number of basic tasks,

such as displaying its contents on a web browser. We do not currently expect machines

to exhibit more complex behaviours, such as using this knowledge to help us executing

the set of instructions or to automatically answer complex questions, such as “what are

the most common steps to make pancakes?”.

An important aspect of this problem is the focus on web resources. Machine-

understandable know-how should be publishable and shareable on the web in a similar

fashion to current instructional web-pages. Even if a system achieves a high level of

machine understanding of human instructions, such a system would not completely

solve the problem above if its knowledge is isolated, and if there is no strategy in place

to allow other systems to access it.

The main goal of this thesis is to enable the development of intelligent systems

by addressing the problem of human instructions on the web not being machine-

understandable. I break down this problem into three main sub-problems, and their

related research questions:

Know-How Representation How can we formalise instructional knowledge in a form

that is machine-understandable and that can be shared on the web?
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Know-How Acquisition How can we acquire a machine-readable formalisation of

instructions from existing instructional resources?

Know-How Applications How can we use a machine-readable formalisation of in-

structions to support novel applications, including applications that support the

execution of such instructions?

Without the availability of machine-understandable instructional resources, machines

would require highly sophisticated systems to interpret raw instructional resources ev-

ery time they need to access them. This is an approach that I deem impractical with

current technologies and that I will not consider in this thesis.

Since the current representation of instructions on the web is not understandable by

machines, I propose a different representation which will remedy this limitation. The

know-how representation question is concerned with the choice of a suitable know-

ledge representation formalism to encode instructional knowledge in a way that can be

easily accessed on the web and processed by machines.

Having defined a formalism, the know-how acquisition question is concerned with

methods to populate a knowledge base with the formal representation instructions. In

other words, we require methods to generate a machine-understandable version of in-

structions from available resources, such as existing instructions on the web. Without

practical and proven strategies to perform knowledge acquisition, a semantic represen-

tation formalism risks being only a theoretical exercise which cannot be applied to the

real world.

The know-how application question is concerned with assessing the extent to which

a given formalism can be considered more machine-understandable by considering the

type of applications that it enables which were not previously possible. Although no

knowledge representation formalism can be optimal in all scenarios, an indication of

its quality comes from its re-usability in several different applications. The primary

objective of knowledge representation should be to represent a domain, and not just

to serve a specific function within a system. A good representation should therefore

capture useful semantic properties of a domain which can be used in different applica-

tions.

It is important to address these three questions at the same time, since the complex-

ity of the know-how acquisition and the know-how applications questions depend on

the choice of the know-how representation formalism. In particular, it depends on the

semantic richness of this representation. While there is no universal metric of semantic
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richness, I will consider the number-of-features approach (Pexman et al. 2008), which

I demonstrated to be effective when applied to distributed knowledge bases (Pareti

et al. 2015). Following this measure, a knowledge representation formalism is said to

be semantically richer the more facts its statements allow us to infer. For example,

the representation of someone as a “student” instead of a “person” can be said to be

semantically richer, as more assumptions can be made about a “student” than about a

“person”.

With this definition in mind, it is usually the case that the more semantically rich a

representation is, the easier it is to support intelligent applications, but the harder it is

to acquire it. This difficulty in acquisition is usually due to the difficulty of ensuring

the correctness of detailed information and all the possible facts that it can entail. On

the other hand, semantically poor knowledge bases, while easy to generate, tend to be

vague and are not expressive enough to have many practical uses. For this reason, it

can be said that know-how acquisition and know-how applications result in conflicting

requirements in the choice of a representation.

The importance of addressing these three questions at the same time is supported by

previous work in the domain of factual knowledge. In the paper by Auer et al. (2007)

that presented DBpedia to the research community, the authors address a similar set

of problems. Auer et al. define a formalisation, the DBpedia ontology, and present

an extraction framework capable of acquiring knowledge in this formalisation from

Wikipedia. At the same time, they provide a set of interfaces and applications that

demonstrate possible uses of this dataset.

I will now summarise the current state of the art with respect to these research

questions and identify the gaps in the literature that need to be filled to solve the central

problem discussed in this thesis, namely the low level of machine understanding of

instructions on the web.

1.2 Overview of Related Literature

Know-How Representation In order to improve the level of machine understanding

of instructions on the web, the first question that needs to be addressed is how to rep-

resent this knowledge on the web. This question can benefit from the significant body

of work on knowledge representation. In particular, a number of formal languages and

technologies have been developed within the Semantic Web field to represent and share

knowledge on the web. I will present a detailed review of these approaches in Section
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2.1, as they represent the backbone of a significant portion of this thesis’ work.

While Semantic Web technologies can be used to represent semantic data on the

web, they do not define what its semantics should be. A large number of formalisms

to define procedural knowledge have been developed and I will review the most rele-

vant ones in Section 2.2. The vast majority of these formalisms, however, have been

designed to represent specialised types of procedures such as planning languages or

business workflows. These formalisations of well-defined domains are in stark con-

trast with the open-ended nature of human know-how, which relies on implicit com-

mon sense knowledge that cannot be defined in exact terms. As a result of this, these

formalisms do not lend themselves well to the domain of human instructions. Exist-

ing attempts at formalising human instructions have been carried out in a number of

projects. These formalisation attempts, however, were focused on supporting a specific

application and were not meant to be reusable and shareable on the web. A formalisa-

tion of human instructions as reusable knowledge, therefore, is largely absent from the

literature.

Know-How Acquisition Several approaches to obtaining instructional knowledge

will be presented in Section 2.3. A number of these approaches can be used to ex-

tract know-how from web instructions, and therefore can be seen as possible answers

to the know-how acquisition question. These approaches, however, suffer from limi-

tations such as domain specificity and significant loss of precision and incompleteness

of the resulting formalisation. A solid and domain independent method for formalising

instructional knowledge is still missing from the literature.

Know-How Applications Several applications of instructional knowledge will be re-

viewed in Section 2.4. These applications demonstrate some of the possible uses of

this type of knowledge. However, they make use of ad hoc formalisations which are

designed to achieve a single task and which have not been tested in multiple scenar-

ios. A demonstration of the possibility of using a single know-how representation of

instructions to support multiple applications is still missing from the literature.

1.3 Contributions

As its main contribution, this thesis describes the first method to address the problem

to represent machine-understandable instructional resources on the web by simulta-
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neously addressing all three of its sub-problems, namely know-how representation,

know-how acquisition and know-how applications. More precisely, I start by defining

a knowledge representation formalism to capture human instructions, thus addressing

the know-how representation problem. I then proceed to address the know-how acqui-

sition and know-how applications sub-problems with respect to this formalism.

In this thesis I aim to achieve both theoretical and practical goals. I do so by in-

terleaving formal and experimental work to develop theoretical frameworks which are

practical, and concrete systems which are well founded. For this reason, the research

outputs of this thesis can be broken down into a number of theoretical and experimental

contributions. Contributions 1, 2, 3 and 8 represent the main theoretical contributions.

Contributions 4, 5, 6 and 7 represent tools and resources that I have developed as proofs

of concepts.

The central piece of work on top of which the other components of this thesis are

based are the following:

Contribution 1 (PROHOW: A Concrete Know-How Formalisation). I define PROHOW,

a knowledge representation formalism for instructional knowledge at a level of abstrac-

tion which is understandable by both humans and machines. On the human side, this

model directly maps to concepts that are commonly found in human instructions, such

as “steps” and “requirements”. On the machine side, the model provides (1) a logical

interpretation capable of supporting reasoning and inferring new facts, and (2) a map-

ping to an automated planning language to reason about the execution of instructions.

The PROHOW formalism provides a solution to the know-how representation prob-

lem. Given this formalism, I thus provide a solution to the know-how acquisition and

know-how applications problems. In order to solve the know-how acquisition problem,

I have developed the following two methods:

Contribution 2 (Know-How Acquisition Method). I provide a know-how acquisition

method that automatically extracts a complete and correct PROHOW representation of

a common class of online instructional resources, namely semi-structured resources. I

validate this method with a large-scale know-how acquisition experiment on two major

instructional websites.

Contribution 3 (Know-How Interlinking Method). I provide an interlinking method

that enriches PROHOW know-how with a semantic context by integrating it with related

knowledge. This method links the PROHOW representation of different instruction sets
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with each other, and with DBpedia. I have tested the quality of the links generated

by this method and I have shown how they outperform an existing human-generated

baseline.

The combination of the know-how acquisition and interlinking methods results in

an automatic approach to generate the PROHOW representation of instructions from

existing web documents. To follow best practice for publishing data on the web, I

extended this approach into a method for publishing know-how as 5-star Open Data.3

The previous pieces of work resulted in the formalisation of a large amount of

real-world data that I made available on the web for further reuse.

Contribution 4 (HOWDB: A Large-Scale Know-How Dataset). I have published a

dataset of over 200,000 sets of instructions formalised using the PROHOW model, and

a dataset containing over 700,000 sets of instructions formalised in 15 different lan-

guages. Publishing this data improves experiment reproducibility and, in line with the

main goal of this thesis, provides a tool to support further research on this topic.

Finally, I provide a solution to the know-how applications problem by demonstrat-

ing two different uses of the PROHOW formalisation of instructions. More specifically,

I demonstrate how the proposed formalisation can support web users in exploring in-

structional knowledge and in following a set of instructions.

Contribution 5 (HowLinks: A Know-How Exploration Tool). I have co-developed

HowLinks, an exploration tool based on PROHOW formalisations. This tool allows

users to explore knowledge related to instructions in novel ways which were not pos-

sible in their original form. For example, the HowLinks tool can be used to provide an

integrated view of related sets of instructions enriched with DBpedia information.

Contribution 6 (Machine-Assisted Execution of Instructions). I have developed a sys-

tem that supports a user in the execution of a set of instructions by keeping track of the

progress of the execution and automating certain steps of the instructions when pos-

sible. I have tested this system with human participants to gain insights into whether

users with no programming experience can correctly use this system to create sets of

instructions and correctly link them to automatable machine functionalities.

In the context of machine-understandable web resources, I have also investigated

whether it is possible to develop similar applications in a decentralised scenario. In a

3http://5stardata.info/en/ (accessed on 17/10/2017)
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decentralised scenario, I do not assume the availability of a central dataset collecting

the know-how of multiple sets of instructions. Instead, I consider PROHOW formali-

sations of instructions to be decentralised similarly to how instructions on the web are

currently decentralised across a large number of different web pages.

Contribution 7 (KnowHow4j: A Decentralised Know-How Exploration Tool). I have

developed KnowHow4j, an exploration tool that allows users to generate and explore

decentralised PROHOW resources. This tool is based on the dynamic discovery of

web data at run time. In other words, web data is discovered, retrieved and integrated

dynamically when it is needed by a user. This tool can also be used by users to generate

HTML instructional pages which contain an embedded PROHOW representation of the

instructions.

Contribution 8 (Decentralised Human-Machine Collaboration Framework). I have

propose a conceptual framework that allows multiple agents, both humans and ma-

chines, to collaborate in the execution of a set of instructions in a decentralised fashion.

1.4 Overview of the Thesis

This thesis is organised as follows:

Chapter 2: Related Work I will start this thesis with a review of the most relevant

literature to the problem at hand. This review is organised around four themes. The first

one is about the Semantic Web technology stack to publish semantic data on the web.

The second one is about previous work on formalisations of procedural knowledge.

Together, the first and second themes describe the state of the art with respect to the

know-how representation problem. The third theme is about the existing literature on

acquiring instructional knowledge from users and from online instructions. As such,

it describes the state of the art with respect to the the know-how acquisition problem.

The last theme addresses the know-how applications problem by describing prior work

on applications of formalised instructions.

Chapter 3: Methodology In this chapter I present the different methodologies that

will be used to evaluate my work. The contributions of this thesis, in fact, span across

different fields, and no single unified methodology exists to evaluate them.
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Chapter 4: Know-How Representation In this chapter I present a mathematical

model and a concrete formalisation of the human instructions domain. This chapter

presents Contribution 1.

Chapter 5: Know-How Acquisition In this chapter I present a method for acquir-

ing instructional knowledge from existing resources and I describe its experimental

evaluation using real-world data. This chapter presents Contribution 2.

Chapter 6: Know-How Interlinking In this chapter I present a method for integrating

know-how with related knowledge. I apply this method to the data obtained in the

previous chapter and evaluate the results against a human benchmark. This chapter

presents Contributions 3 and 4.

Chapter 7: Know-How Applications In this chapter I present two different applica-

tions of the proposed know-how formalisms. Each of these applications is discussed

in a centralised and in a decentralised scenario. This chapter presents Contributions 5,

7, 6 and 8.

Chapter 8: Conclusion In this last chapter I summarise the main findings of this

thesis. I discuss the extent to which this work has solved the main problem addressed

by this thesis and present opportunities for further research.
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Related Work

In this chapter I will describe the main research areas that relate to the representation of

human instructional knowledge on the web. Sections 2.1 and 2.2 describe respectively,

the state of the art in representing knowledge on the web, and on formalising proce-

dural knowledge. These sections relate to the know-how acquisition research problem.

In Section 2.3 I will presented existing research on acquiring instructional knowledge

from web resources, and from users with no programming experience. In Section 2.4, I

will review specific applications of formalised instructional knowledge. These last two

sections relate, respectively, to the know-how acquisition and know-how applications

research problems.

2.1 Representing Data and Knowledge on the Web

The web has become a place where data is published, discovered and accessed. Pub-

lishing data on the web is particularly important for applications that use distributed or

decentralised data sources, or to allow datasets to be re-used. This section reviews the

main related research areas, namely Linked Data, Ontologies and the Semantic Web.

2.1.1 The Uniform Resource Identifier (URI)

When data is shared between different organisations, a critical problem is to make

sure that the same entities and concepts encoded in a message at the source can be

unambiguously interpreted by the receiver. To overcome this problem Uniform Re-

source Identifiers, or URIs, can be used. A URI can be used to unambiguously identify

concepts and entities over the internet. When used correctly, URIs guarantee that two

12
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identifiers are the same only when they were meant to refer to the same entity or con-

cept. In its most generic formulation1, the syntax of a URI is made of the following

components:

scheme:[//[user:password@]host[:port]][/]path[?query][#fragment]

The scheme component specifies one of a limited set of canonical ways to identify a

resource. Some valid scheme examples are http, ftp, file and mailto. While cer-

tain schemes such as http define resources at a web scope, others such as file can

define resources also at a local scope. For example, the same URI file:///doc.txt

can be used by two different file-systems to refer to two different resources. The use of

URIs in data-sharing scenarios is almost exclusively concerned with web-scope identi-

fiers. In such context, the term URI has practically become a synonym of a web-scope

identifier, typically with scheme http. The use of the user, password and port com-

ponents is also very rare, and therefore, in practice, URIs tend to be traditional URLs,

of which URIs are a generalisation. In this thesis, the term URI will be used in a sim-

ilar way to refer to URIs which are also web-scale identifiers pointing to potentially

web-retrievable resources, such as those using the http, https and ftp schemes.

An extension to URIs which is worth mentioning is the Internationalized Resource

Identifier, or IRI which allows non-latin characters to be used in the identifier. While

conceptually equivalent, IRIs adoption is still limited and many tools still limit their

support to URIs. This is why the term URI has been preferred in this thesis, although

the results presented can be equally applied to IRIs.

The main purpose of URIs is to identify specific resources. Special kinds of URIs,

however, can be used to encode more information. For example, we can observe that

URLs are a type of URI. The main function of a URL is to locate a resource on the

web, most commonly through the HTTP protocol. It is therefore possible to create a

URI which also acts as a URLs. If the HTTP protocol is used in the definition of such

URIs, they can be called HTTP URIs. In other words, an HTTP URI can be used both to

identify a concept and to retrieve a certain resource.

When a new concept is created, a URI to refer to it might not exist. It is therefore

necessary to create, or mint, a new URI to refer to that concept. In order to mint

a new URI, it is important to choose a good strategy that guarantees its uniqueness.

While it is acceptable that multiple URIs might refer to the same concept, the same

URI should never refer to different concepts, as this would most likely lead to semantic

1https://tools.ietf.org/html/rfc3986 (accessed on 17/10/2017)
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inconsistencies.

2.1.2 Resource Description Framework (RDF)

The URI identifiers described in the previous section are the building blocks of the

Resource Description Framework (RDF) data model (Raimond and Schreiber 2014).

RDF incorporates URIs, useful to identify entities, into a complete graph data structure.

An RDF dataset can be defined as a set of graphs. Graphs, which are identified by a

URI, can be used to partition data into different sets. This can be useful to organise

data, to attach metadata information, such as provenance, to a specific set of data, or to

improve query performance by limiting the scope of queries to specific graphs.

Each graph can then be defined as a set of triples ă S,P,O ą, each one consisting

of a subject S, a predicate P and an object O. Conceptually, a triple is a statement that

a certain relation P exists between a subject entity S and an object entity O. For this

reason, RDF graphs can be used to represent labelled directed graphs.

While a shared data model is crucial to ensure the interoperability between multi-

ple datasets, the exact format in which data is serialised is not. For this reason, the RDF

data model can be encoded in a number of serialisations. The Terse RDF Triple Lan-

guage, or Turtle, is an RDF textual serialisation aimed at improving human-readability

of RDF data (Carothers and Prud’hommeaux 2014). Like in most other serialisations,

namespace prefixes are used to shorten the character length of individual URIs by sim-

plifying the recurrent base prefix, or namespace. For example, the following line of

text assigns the namespace http://foo.org/ to the prefix foo:

@prefix foo: <http://foo.org/> .

Given this prefix, the triple asserting that the entity of the city of Edinburgh (identified

by URI http://foo.org/E01) is located in Scotland (identified by URI http://foo.

org/Scotland), given URI http://foo.org/located_in denoting the “located in”

relation, can be written in more readable form as follows:

@prefix foo: <http://foo.org/> .

foo:E01 foo:located_in foo:Scotland .

Table 2.1 contains a list of namespaces that will be used throughout this thesis.
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Prefix Namespace

prohow: http://w3id.org/prohow#

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs: http://www.w3.org/2000/01/rdf-schema#

skos: http://www.w3.org/2008/05/skos#

foaf: http://xmlns.com/foaf/0.1/

dbr: http://dbpedia.org/resource/

dbo: http://dbpedia.org/ontology/

pto: http://www.productontology.org/id/

qudt: http://qudt.org/schema/qudt/

unit: http://qudt.org/vocab/unit/

: http://example.org/

Table 2.1: The RDF namespaces used in this thesis.

2.1.3 The SPARQL Protocol and RDF Query Language (SPARQL)

The SPARQL Protocol and RDF Query Language, or SPARQL, (Seaborne and Harris

2013) is the query language to query RDF data recommended by the World Wide Web

Consortium (W3C).2 SPARQL queries operate over RDF data and require a SPARQL

software implementation. Most RDF-focused databases, or triplestores, such as Virtu-

oso3, incorporate a SPARQL implementation. Triplestores often allow SPARQL queries

to be executed through a web service accessible over HTTP called a SPARQL endpoint.

Like other graph query languages, such as Cypher,4 SPARQL queries are centred

around the concept of graph pattern matching. In its simplest form, a SPARQL graph

pattern can be seen as a set of potentially incomplete RDF triples, where the subject,

predicate or object of triples can be substituted with variables. In the SPARQL syntax,

variables are denoted by a prefixed question marks. A result of a simple graph match-

ing query is a mapping V ÞÑ T , called variable binding, between the set of variables V

declared in the query and the set of RDF terms T , which is the set contains all possible

URIs, literals and blank nodes. A correct answer to the query is a mapping such that

the graph obtained by substituting each variable in V with the corresponding mapped

RDF term in T is a sub-graph of the queried RDF dataset. A complete answer set is

2https://www.w3.org/ (accessed on 17/10/2017)
3https://virtuoso.openlinksw.com/ (accessed on 17/10/2017)
4http://neo4j.com/docs/stable/cypher-introduction.html (accessed on 17/10/2017)
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the set of all possible correct answers, or in other words, the set of all valid variable

bindings.

The queries discussed so far are of the SELECT type, which return a variable bind-

ing as a result. Other possible SPARQL queries are ASK queries, which return a boolean

value to indicate whether a query has at least one solution and CONSTRUCT queries,

which return a valid RDF dataset as a result. A specification also exists for SPARQL

UPDATE (Passant et al. 2013) queries, which are used not to retrieve answers from an

RDF dataset, but to modify it. UPDATE queries can be used, among others, to create or

delete triples and graphs.

2.1.4 Vocabularies and Ontologies

While URIs allow the precise identification of entities across multiple databases, they

do not contain the meaning of such entities. In other words, the occurrence of the same

URI across two datasets implies that both datasets are referring to the same entity.

However it might not be known what this entity is.

It becomes therefore important to share not only the identifiers to the same entities,

but also their semantic interpretation. For example, the semantic interpretation of the

URI http://foo.org/located_in should be relation between a city and the country

where it can be found.

This semantic interpretation can be described in multiple forms. Typically, one

such form is an informal human-understandable description in natural language. A

collection of terms described in natural language can be called a vocabulary. The

main purpose of a vocabulary is to attach a standard semantic definition to a collection

of terms. It is also possible to describe the meaning of a term in a more formal way

using schema information and logical axioms.

Schema information typically describes the role played by a term within the struc-

ture of the data by defining the following information:

• The URIs that denote classes, such as the class foo:city, denoting the set of

things which are cities.

• The URIs that denote properties, such as the property foo:located_in, denot-

ing a particular relation between a city and a country.

• Hierarchical information about sub-classes and sub-properties. For example,

the class foo:city can be a sub-class of the more generic class of a foo:
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settlement.

• The domain and range of properties. For example, it is possible to state that the

subject of the foo:located_in property is an entity belonging to class foo:

city, while its object must belong to class foo:country.

Schema definitions typically describe only very basic hierarchical properties. If

more expressiveness is needed, logical axioms can be used to formally constrain the

meaning of a term. The most common logical formalism used for this purpose is

Description Logic (DL), which is described in more detail by Baader et al. (2008). DL

statements allow more expressiveness in the definition of a term compared to typical

schema information. For example, two classes might be declared as mutually disjoint,

or cardinality constraints can be imposed on properties (e.g. a city must be located in

at most one country).

The formal definition of terms for the purpose of sharing their semantic interpreta-

tion is related to the concept of an ontology. The word ontology, originally imported

from philosophy, has received numerous definitions within the computer science do-

main (Giaretta and Guarino 1995). Two different senses of the world ontology have

become the most prominent (Chandrasekaran et al. 1999). The first sense refers to

the semantic interpretation of a vocabulary of terms, also called T-Box from the word

“terminology”. According to this sense, an ontology can be defined as an explicit

representation of a conceptualisation (Uschold and Gruninger 1996). Often the word

“shared” is added to the definition as the typical purpose of ontologies is to enable

communication between different agents or systems.

The second sense refers to a set of facts, also called A-Box from the word “asser-

tions”, that describe a particular domain using a certain vocabulary. In this work, the

terms ontology and vocabulary will be used to refer to the T-Box sense. The terms

machine-understandable knowledge and knowledge base, instead, will refer to the A-

Box sense.

There is no universal definition of the terms schema and an ontology and these

terms are sometime used in a similar way. Both schemas and ontologies allow in-

ferences to be made and both of them use terms which are not completely formally

defined. In this thesis, the word vocabulary will be used to refer to a collection of

terms and their related semantic interpretation, whether it is formally or informally

defined. The words schema will refer to a knowledge representation formalism which

informally describes a collection of terms and formally describes their hierarchical
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structure. The word ontology will be used instead to refer to knowledge representation

formalism that extends a schema with a formal description of non-hierarchical logical

axioms.

2.1.4.1 Vocabularies and Ontologies Definition Languages

Shared vocabularies and ontologies allow people and machines to reach a better under-

standing the intended meaning of URI identifiers. However, the definition of a vocabu-

lary or an ontology itself presupposes a shared understanding of ontological relations.

For example, a common relation between two classes is the sub-class relation. A vo-

cabulary might need to specify that class A is a sub-class of class B. While the URIs

used for the entities A and B could be created locally for the vocabulary, the URI refer-

ring to the sub-class relation needs to be globally understandable.

To make ontological relations globally understandable, a number of common stan-

dards exist. These standards can be seen as having different levels of expressiveness.

One of the most basic of such standards is the RDF Schema, or RDFS, (Brickley and

Guha 2014). RDFS is a collection of RDF terms that can be used to define which URIs

are to be considered classes (rdfs:Class), and which are to be considered proper-

ties (rdf:Property). Classes and properties can be structured hierarchically using the

sub-class (rdfs:subClassOf) and sub-property (rdfs:subPropertyOf) properties.

Properties can also define their domain (rdfs:domain) and range (rdfs:range). An-

other common RDFS term is rdfs:label, which is used to provide a human readable

label to URIs.

RDFS statements can be used to infer new facts. In the standard RDFS entailment

regime,5 the domain and range of a property r can be used to infer the class or classes of

the subjects and the objects connected with relation r. The sub-class and sub-property

relations can be used to infer more generic classes and relations whenever the more

specific ones are used.

While RDFS defines schemas, the Web Ontology Language (OWL) is one of the

most prominent languages to define ontologies (Krötzsch et al. 2012). OWL describes

axioms in DL and it represents them using the RDF data model.

5https://www.w3.org/TR/rdf11-mt/#rdfs-entailment (accessed on 17/10/2017)
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2.1.5 Linked Data

The semantic interpretation of an RDF dataset is to a large extent dependent on re-

sources it is linked to, such as other datasets, or the vocabularies and ontologies that

it adopted. The discovery of such resources is therefore important in order to reach a

correct semantic interpretation of a dataset. Linked Data is a method for publishing

data containing URIs, such RDF data, in order to allow the discovery of other related

datasets. The basic principle of Linked Data is to identify concepts with HTTP URIs

which can be used to locate other Linked Data resources which describe these concepts.

The act of retrieving the resource located by an HTTP URI is called URI dereferencing.

In principle, this process can be repeated after each discovered resource to discover

more and more resources. In practice, however, there is no guarantee that HTTP URIs

will lead to the discovery of more Linked Data resources.

While Linked Data resources can be explored automatically by machines, they are

not human understandable. Human and machine-understandable resources can co-

exist at the same web locations, i.e. by retrieving the same URL, using technologies

such as RDFa or URI dereferencing. RDFa is a standard to embed RDF resources into

the metadata of an HTML document. This metadata is not visible when the page is

displayed in a web browsers. As a result of this, a human accessing the page would

access a human readable document. A machine instead, could parse the HTML page to

automatically extract its RDF contents.

A similar result can be achieved by content negotiation. Content negotiation is a

feature of the HTTP protocol that allows to request a web resource in a specific format

by setting the Accept header of an HTTP request to the desired format, for example

application/rdf+xml for a machine readable document, or text/html for a human

readable one.

2.2 Procedural Knowledge Representation

Procedural knowledge is a common type of knowledge and it can be encountered in

in different forms and in many domains. For example, business workflows, planning

problems and human instructions can all be considered types of procedural knowledge.

I will now review the main types of existing procedural formalisms, and how they relate

to human know-how.



Chapter 2. Related Work 20

2.2.1 Automated Planning languages

One of the most mature fields using process representations is the field of Automated

Planning (AP). Within this field, actions are typically described in terms of their inputs

and outputs, and their preconditions and effects. The objects and conditions manipu-

lated by actions are usually represented by certain variables which effectively describe

a particular state of the world. When an action is allowed in a certain state, its exe-

cution can be interpreted as the transition from that state to a different one. The goal

of AP algorithms can then be seen as the task of identifying a suitable sequence of

actions, also known as a plan, to reach a certain goal state from a certain starting state.

One of the main goals of AP is the creation of algorithm that can effectively search the

space of possible plans to find (or approximate) an optimal plan, under some definition

of optimality.

Typical planning description languages like the Planning Domain Definition Lan-

guage (PDDL) (Mcdermott et al. 1998) adhere to a generic formulation of planning

which closely resembles logical proofs. The goal of planning can then be seen as try-

ing to prove a certain goal possible given a set of assumptions. In this case, both the

goal and the assumptions can be seen as logical statements. The actions that are al-

lowed in the planning domain can be seen as inference rules, which allow certain new

facts (post-conditions) to be proved if certain conditions are met. If found, a proof of

this kind can be seen as a plan.

A different approach to planning comes from Hierarchical Task Networks (HTN)

(Erol et al. 1994a). The central concept of HTNs is the notion of task decomposition.

HTN tasks can be accomplished by accomplishing a set of sub-tasks, thus generating

a hierarchical structure which represents the process of achieving a goal at different

levels of abstraction. Typically, HTN languages define the concept of primitive tasks,

namely tasks which can be achieved directly without being further decomposed into

simpler tasks. Given a goal task to achieve, the process of planning using HTNs can

then be seen as the process of decomposing the goal into a set of sub-tasks such that

all of them are primitive tasks. The execution of all such primitive tasks, optionally

subject to a particular parametrisation and ordering discovered during planning, will

then result in the completion of the goal.

Human instructions are inherently decentralised, and when formalising them, spe-

cial care should be paid at easing the integration of different sets of instructions. AP

process representations, on the other hand, are not designed to be decentralised, and
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this can cause problems in integrating multiple AP processes coming from different

sources. For example, multiple PDDL planning domain descriptions cannot be inte-

grated automatically.

Given the strong emphasis on automation, AP tends to adopt “low-level” process

representations. These formalisms can precisely and effectively describe limited do-

mains, such as the movement of boxes in a warehouse, allowing for complex inferences

to be made. In “classical planning”, full observability of the world and deterministic

actions are usually assumed. This is often in stark contrast to human-generated plans,

which are characterised by more underspecified and less predictable actions. Even

when AP algorithms deal with uncertainty, such as in “probabilistic planning”, they

still rely on detailed descriptions of the world, such as the level of uncertainty associ-

ated with the actions.

In this section I have reviewed two foundational approaches of AP which strongly

related with the work of my thesis. I have not covered other aspects of AP, such as

the specialisation of planning algorithms to more specialised domains, or approaches

to improve the efficiency of automated planners. For a more comprehensive survey of

this field, see Geffner and Bonet (2013).

2.2.2 Standards for Process Representations

With the objective of improving the interoperability between different process repre-

sentation, several academic and industrial institution collaborated for the creation of

the Process Interchange Format (PIF) ontology (Lee et al. 1998). This ontology is

designed to act as an interlingua between different domain specific process represen-

tations by capturing the most important and co-occurring concepts. The question of

which and how many important concepts to include in the core PIF ontology does not

have an exact answer, and the authors of PIF aimed to achieve the best trade-off be-

tween simplicity and expressiveness for the most common use-cases. The PIF ontology

was later incorporated into the Process Specification Language (PSL) (Grüninger and

Menzel 2003), a language more focussed on business and manufacturing use-cases.6

PIF does not provide the right level of abstraction needed in this project to model

generic human know-how. While some concepts in PIF are not required in a human

know-how domain, thus creating redundancy, others do not have an explicit represen-

tation, such as the concept of a set of instructions including different “methods”. PSL

6https://www.iso.org/standard/35431.html (accessed on 17/10/2017)
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suffers from similar limitations in modelling human know-how. Moreover, PSL was

not designed to be distributed, and dividing a PSL process into several parts might

cause them to be locally inconsistent.

Another approach to standardisation comes from the Schema.org7 initiative. This

initiative, backed by some of the major search engine operators, aims to standardise

metadata, or data markup, for web resources. To do so, Schema.org provides identifiers

for a large number of common classes and relations, such as Person and City. Since

August 2017 Schema.org has introduced a representation of step-by-step instructions

with the HowTo vocabulary. This vocabulary is a generalisation of a previous Recipes

vocabulary which is focussed on instructions from the cooking domain. One of the two

main components of this vocabulary is an ordered lists of elements which can either be

steps, called HowToStep, or further HowToSection elements. An HowToStep element

is made of a number of directions and/or tips called, respectively HowToDirection and

HowToTip. The other component of the vocabulary allows to define requirements,

called HowToItem, which can be specialised in either consumable (HowToSupply) or

non consumable (HowToTool) objects.

The Schema.org HowTo vocabulary provides an efficient representation of simple

linear sequences of steps. However, it lacks sufficient expressiveness to model more

complex sets of instructions, such as those available on the WikiHow website. For

example, this vocabulary cannot, to date, be used to represent alternatives ways, or

methods, to achieve the same result. Defining a partial ordering between steps is also

not currently possible, as a notion of dependency or temporal constraints between steps

is not available on Schema.org yet. While simplicity and ease to use is one of the main

strength of the Schema.org vocabulary, this comes at the cost of a lack of precise

semantics. For example, it is not explicitly asserted whether steps should be executed

sequentially in the same order as they are listed. Similarly, in case multiple groups of

steps (HowToSection) are present, it remains undefined whether such groups of steps

can be performed independently, or on whether the ordering in which they appear in

the document should be taken into consideration.

A related project coming from the Semantic Web field has developed the Activity

Streams specification (Snell and Prodromou 2017). This specification aims to stan-

dardise the formalisation of human activities using Linked Data and it is especially fo-

cused on capturing social actions of web users. The Activity Stream specification aims

to be simple and it is centred around the concepts of “actors”, “activities” and “ob-

7http://schema.org/ (accessed on 17/10/2017)
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jects”. Intuitively, actors are the entities capable of performing activities that involve

certain objects. This specification is not concerned with the notion of how complex

activities are performed, and it lacks, for example, the notion of how an activity can be

decomposed into simpler sub-activities.

2.2.3 Workflows and Web Services

Web Services can be thought of as self contained applications that can be accessed

thought internet interfaces. The description of a web service typically describes what

a certain functionality achieves, but not how it is achieved. For example, the Web

Services Description Language, or WSDL (Ryman et al. 2007), can be used to define

the inputs and outputs of a service.

An important feature of Web Services is the ability to combine multiple services

together into workflows. For example, the outputs of a service can be used as inputs

for another one. Several languages have been created to represent workflows and their

composition (Alonso et al. 2004). In the Semantic Web field, the most prominent one

is OWL-S (Martin et al. 2007). OWL-S defines Web Services which can be combined

into workflows using control constructs, similar to workflow patterns (Van Der Aalst

et al. 2003).

Although these type of workflows represent procedural knowledge, they are not

suitable to represent human instructions. In OWL-S for example, processes, which are

the basic building blocks of workflows, are defined as interactions between a client

and a service; definition which is arguably not applicable to human instructions. For

example, if we state that a task t: “fix a broken tire” is an OWL-S process, following

the axioms of the OWL-S ontology we must also commit to the fact that t is also of

type Service, of type ServiceModel, and exactly one of the the following three types:

AtomicProcess, SimpleProcess and CompositeProcess. Each of those classes carries a

specific meaning which comes both from an informal definition of the class and from

logical axioms. For these reasons, reusing the OWL-S definition of a process in a

domain different from web-services, such as the domain of human instructions, can

not only lead to misunderstandings, but it can also lead to unwanted inferences and

logical inconsistencies when axioms are violated.

Although certain aspects of human instructions, such as step ordering, can be in-

terpreted as workflows, existing workflow languages do not provide a practical way

of formalising such instructions. Workflow languages might lack an explicit repre-
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sentation of common concepts like “steps” and “methods”, or might include complex

operators that do not have a counterpart in human instructions.

Typically, the basic building blocks of a workflow are assumed to be automated

functions. A number of workflow languages, however, consider both humans and ma-

chines in their execution. CompFlow, presented by Luz et al. (2014), is an example of

this. CompFlow is a workflow definition language similar to OWL-S, but with the main

difference of considering both human and machine agents. Another example is Crowd-

Lang, presented by Minder and Bernstein (2012). CrowdLang is a language to model

Social Computation workflows, and it supports several common Social Computation

patterns, such as contests, divide-and-conquer and group decisions. Both CompFlow

and CrowdLang, however, are sophisticated workflow languages that require expert

knowledge and programming skills to be defined. Their level of complexity is not

compatible with common human instructions.

2.3 Know-How Acquisition

Human know-how can be a valuable resource in many applications and several ap-

proaches have been developed to extract aspects of it. The majority of the existing

approaches focus on obtaining such know-how from human instructions, or by inter-

acting with humans directly. However other less common resources, such as Twitter8

tweets, have also been considered.

2.3.1 Know-How Acquisition from Instructions

Most approaches to acquire know-how from instructional documents come from the

area of Natural Language Processing (NLP). An early application of NLP to formalise

wikiHow instructions comes from Addis and Borrajo (2011), who address the task of

translating instructions into formal PDDL plan descriptions. They use an HTML parser

to extract relevant sentences from a instructional web page, which are then parsed by

an NLP parser. Although the details of this last parser are not given, it is known that

it makes use of standard NLP approaches and tools such as stemming, stopwords and

WordNet (Miller 1995). The result of this NLP parser is the labelling of a number of

subsets of each string, such as the unit of measure of an ingredient, or the identification

of the main verb that describes the action that should be performed in a step. These

8https://twitter.com/ (accessed on 17/10/2017)
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labels are then represented as a PDDL actions. For example, the step “Mix flour and

salt” could be translated into the action signature mix(flour,salt).

The results of this early work provide evidence of the difficulty in parsing natu-

ral language expressions about instructions. The authors focused their evaluation on

three categories of instructions, including cooking recipes, and reported 68% accuracy

of the extracted PDDL actions. Moreover, representing the details of natural language

expressions as PDDL actions appears to be restrictive, as complex expression are re-

duced to a set of actions and components. It is unclear how other aspects of a step,

such as time constraints, modalities, optional actions and vague terms can be parsed

and represented in PDDL.

A higher accuracy was reported by Jung et al. (2010), who reached 84% accuracy

in the task of generating a “situation ontology” based on the concepts of “goals”, “ac-

tions”, “objects” and “locations” from wikiHow and eHow instructional articles. To

extract these concepts an NLP approach is tried first, namely syntactic pattern-based

parsing, and then, in case of failure, a ML classifier using the conditional random field

method is used. The higher precision achieved by this system compared to the work

by Addis and Borrajo (2011) can be seen as an indication that the goal of extracting

ontological concepts from a instructional natural language labels is easier than the task

of converting them into AP expressions.

An accuracy of 80% of the extracted knowledge was reported by Kiddon et al.

(2015) in parsing cooking recipes. Their approach relies relies on NLP parsing to

label words into a number of categories, such as “food” or “location” which are then

fed to an expectation-maximization ML algorithm to construct an action graph. This

graphs defines which actions should be performed on which items and in which order.

The focus of this work on the cooking domain is not unusual, as this domain can

be regarded as one of the simpler to analyse and most researched domains of human

know-how. Other applications of NLP in the cooking domain have been developed

by Schumacher et al. (2012), Malmaud et al. (2014) and Tenorth et al. (2010). Other

domains of human know-how related to areas such as social interactions, animals,

philosophy, religion and arts are often not considered. The main difference with the

cooking domain is that these other areas cannot be easily abstracted into a list of actions

and objects.

Tenorth et. al. for example, parsed wikiHow cooking instructions into executable

robot plans. Their approach combines the NLP parsing of natural language instruc-

tional texts with an existing knowledge base of actions and camera-identifiable ob-
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jects. The ambitious goal of automating an entire recipe using a robot was achieved

by supplying the robot with additional knowledge and domain specific information.

In particular, human recipes tend to contain very high level descriptions of actions

where many details are left implicit. In order to achieve robotic automation, however,

the robot tried to infer these details and, when not possible, they had to be supplied

by humans. Overall, this work provides insights on the amount of common sense in-

formation that is omitted from human instructions, although being necessary for their

execution.

Another system based on NLP to extract procedural knowledge from instructions

has been performed by Zhang et al. (2012). This work used NLP parsing and extraction

grammars to detect the various components of an instructional sentences, such as the

action, the object it is applied on, the instrument it is used and the purpose of the action.

This system detected the different components of a set of instructions with different

levels of accuracy, ranging from 68% to 97.3%. These results seem to suggest that

certain components of a set of instructions are easier to detect than others. For example,

the main actions and temporal parameters seem to be easy to detect, while instruments

and spatial parameters are not. Zhang et. al. acknowledge the importance of extracting

procedural knowledge that can support multiple applications. They speculate a number

of such applications although the suitability of their formalisation in the context of

those applications was not tested.

These studies demonstrate the wide variety of possible approaches to extract pro-

cedural knowledge from instructional texts. However, their results cannot be directly

compared with each other as they were tested on qualitatively different datasets and

adopted different evaluation approaches. More importantly, a direct comparison is not

possible because each approach extracted different aspects of instructional know-how

which, in many cases, were not formally defined. Without a shared semantic represen-

tation of instructional know-how, these approaches cannot be directly compared and

integrated.

Overall, these approaches do not demonstrate the reusability of the extracted know-

ledge across multiple applications. Moreover, these approaches inherently suffer from

a significant decrease in accuracy compared to the original sources. Some of these ap-

proaches are also limited by their domain-specificity or by formalising an incomplete

representation of know-how where certain aspects are missing. It can therefore be

said that a domain-independent approach to extract reusable instructional knowledge

without a significant loss of accuracy is not currently available in the literature.
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2.3.2 Know-How Acquisition without Instructions

Instructions are not the only class of web resources that contain procedural knowledge.

A number of projects have investigated the possibility to extract know-how from non-

instructional resources. For example, Fukazawa and Ota (2010) developed a hierarchy

of tasks to help mobile users navigate a space of possible services that can be used to

achieve the users’ goals. This hierarchy is generated by analysing frequent verb-object

associations, such as “watch” and “movie” from the context words of the results of

a web query for a given topic, such as “movie”. The chosen topics have been taken

from 31 content categories of Yahoo! Japan.9 This work shows how statistical features

such as the correlations of verbs and nouns in a corpus of documents can be used to

infer tasks and their sub-activities even in the absence of an explicit representation of

instructions.

In the medical domain, Song et al. (2011) analysed the abstracts of biomedical

scientific publications to populate an ontology with medical-specific procedural know-

ledge. In their work, a procedure is composed by a method, such a treatment or a

medication, that is applied using a particular action onto a target, such as a disease

or an organ. A complex procedure, called purpose, can be decomposed into a set of

simpler ones, called a solution. The abstracts of the chosen scientific publications was

preprocessed using NLP tools such as POS tagging and syntactic parsing. The output

of this preprocessing step were then fed to ML classifiers to identify the components

of the various processes in the text. Overall, their evaluation shows an accuracy of

81% in identifying the purpose and solution described in an abstract, and of 62% in

identifying the target, action and method of a particular process.

When following a set of instructions on how to do a task, the completion of such

task is typically the main outcome that is being pursued. However, tasks might also

have important secondary outcomes. Preparing and eating certain foods, for example,

could impact the sport performance of an athlete on the following days. Discovering

this type of outcome knowledge is the focus of the work by Kıcıman and Richardson

(2015). In their work, the association between tasks and outcomes is mined on Twitter

and it is based on the assumption that users are likely to tweet about the discovered

outcomes of certain activities soon after tweeting about performing such activities. To

achieve this goal, a number of problems was addressed, such as identifying tweets

about a user’s experience, estimating the time of the user’s experience (which might be

9http://www.yahoo.co.jp/ (accessed on 17/10/2017)
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different from time when the tweet was published), linking user’s experiences together

into timelines of related events and classifying outcomes of events as either positive

or negative. The evaluation of this system was performed on two case studies, namely

running a marathon and adopting a pet. While it is unclear how well this system would

generalise to other scenarios, the results obtained in these case studies suggests that

information about common outcomes of certain actions can be extracted from Twitter

data.

2.3.3 Learning Programs from Non-Programmers

While instructional resources are a convenient source of readily available know-how,

this type of knowledge can also be acquired directly from humans. Research in this

direction has been conducted by Azaria et al. (2016), who have developed an instruc-

tion learning system capable of learning automatable commands from users within

the email domain. These commands are communicated in natural language by a user

through a dialogue interface. This interface is used both to learn procedures, such as

sending an email, and to learn relevant factual data, such as the email addresses of

certain individuals. Commands defined by a user can in principle be shared and reused

by other users, although the possible extent of this reuse is not clear. The experimental

evaluation of their system reports that 41% of the test subjects managed to complete

the whole experiment and that 85% of the defined commands could be parsed correctly.

A similar approach was developed by Quirk et al. (2015) to parse “if-this-then-that”

natural language statements into executable code. An example of “if-this-then-that”

instruction in natural language is “send me an email if it is sunny in Edinburgh”. This

instruction would be implementable by a service capable of monitoring the current

weather forecast and one capable of sending emails. The evaluation of their system

reports a 81% accuracy in parsing “if-this-then-that” statements that are unambiguous

to humans.

Branavan et al. (2010) created a system that can automatically learn how to exe-

cute instructions in the domain of GUI interactions with an operating system. In this

restricted domain, the actual steps required to complete a task such as ”open control

panel” can be learnt by assuming (1) a limited set of possible actions, such as user

clicks on the interface, and (2) a way to determine whether a task has been accom-

plished successfully. This system learns how to execute instructions using reinforce-

ment learning and without relying on an explicit model of the environment. Certain
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aspects of the model are, on the other hand, learnt dynamically. Domain knowledge

is injected in the description of the states of the environment and in the choice of the

available primitive actions (or low-level actions), such as the action “double click”.

Domain knowledge is also required to define the reward function used by the rein-

forcement learning algorithm, which assumes a correlation between the words found

in the instructions, such as “control panel”, and the labels of certain objects which

should be available in desirable states of the environment associated with high reward.

The method described by Branavan et al. (2010) relies on several domain-specific as-

sumptions and it is not clear to what extent it could be applied to other domains.

Further proof of the feasibility of acquiring formal instructional knowledge directly

from users comes from websites that offer automation services. Automation services

allow users to create (and often share) automated workflows that combine several ap-

plications together, such as email providers and web-storage. For example, If This

Than That (IFTTT)10 allows users to create simple fully automated workflows where

a trigger, such as receiving an email, triggers a certain action, such as the creation of a

file in an online repository.

A similar product is Microsoft Flow,11 although it is more oriented toward the inte-

gration of Microsoft products. Tasker12 is an application similar to IFTTT that allows

users to create simple workflows combining Android’s applications and triggers. While

allowing for more complex workflows than simple triggers, it is also aimed at a more

technical audience that is willing to spend more time learning how the system works to

achieve better automation. Similar to Tasker is Zapier.13 Zapier can be used to define

more complex workflows than IFTTT by allowing multiple effects to be joined to the

same trigger.

Although typically offering some of their functionalities for free, these automa-

tion services are commercial systems. While they focus on integrating different ap-

plications and services, they do not release data about the workflows in a way that

is reusable by and integratable to other systems. Two other important limitations of

such systems are the very limited set of workflows operators allowed (usually only one

trigger and one action) and the inability to represent manual tasks, which limits their

applicability to fully-automatable workflows only.

10http://ifttt.com/ (accessed on 17/10/2017)
11https://flow.microsoft.com/ (accessed on 17/10/2017)
12http://play.google.com/store/apps/details?id=net.dinglisch.android.taskerm

(accessed on 17/10/2017)
13http://zapier.com/app/explore (accessed on 17/10/2017)
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2.4 Applications of Instructional Knowledge

A machine-understandable representation of human instructions can be applied in a

wide variety of areas ranging from Information Retrieval to Service Recommendation

(Myaeng et al. 2013). Two examples of areas that can benefit from formalised instruc-

tions are Activity Recognition and Robotics.

The central problem addressed by Activity Recognition is the identification of a top

level activity (or intention) from a set of observations (Kim et al. 2010). The intention

of preparing tea, for example, could be inferred after observing an agent boiling water

and placing a tea bag in a cup. A challenge faced by Activity Recognition systems is

the acquisition of a model of the activities to be recognized. If the domain of interest

involves common human activities, their model can be extracted from web instructions

and used to recognize such activities (Perkowitz et al. 2004).

While the application of human instructions to Robotics remains an ambitious goal,

one experiment in this direction was conducted by Tenorth et al. (2011) and employed

a robotic agent. The agent attempted to perform the activity of preparing a pancake by

following user-generated instructions retrieved from a wikiHow website. This exper-

iment explored the potential of human know-how for process automation and high-

lighted the importance of integrating individual processes with external sources of

knowledge. Artificial agents, in fact, require more information about a process than

what can typically be extracted from a single set of instructions, as they lack human

common sense. Knowledge about an ingredient, for example, allowed the agent to

learn what it looked like and whether, by virtue of being perishable, it might be found

in the refrigerator.

These applications demonstrate some of the possible uses of formalised instruc-

tional knowledge. However, such applications rely on domain specific formalisations,

which are optimised for the task at hand, but that cannot be easily re-used. Overall,

the possibility to use a single formalisation of instructions to support a diverse range

of applications has not yet been demonstrated.
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Methodology

The main problem addressed in this thesis is the inability of machines to understand

instructional resources on the web. As discussed in Chapter 1, I address this problem

by simultaneously addressing three main sub-problems, namely know-how represen-

tation, know-how acquisition and know-how applications. In other words, after de-

veloping a knowledge representation formalism suitable to modelling the domain of

human instructions (know-how representation), I proceed to inquire whether such rep-

resentation could be extracted automatically (know-how acquisition) and whether it is

sufficiently rich to support human exploration and execution of instructions (know-how

applications).

To the best of the author’s knowledge, no previous research has addressed all three

of these sub-problems within a unified framework and there is no single methodology

in the literature that can be used to address them. Although correlated, these three

problems require qualitatively different solutions and distinct methodologies for their

evaluation. For example, knowledge acquisition approaches can be evaluated by test-

ing them against real-world benchmarks, while the potential applications of a know-

ledge base tend to be demonstrated by the development of prototypes. In this chapter

I present the different methodologies that I use to evaluate my solutions to the three

problems mentioned above.

3.1 Know-How Representation Methodology

The central contribution of this thesis, which binds together all the other contributions,

is the use of a common knowledge representation of the domain of human instructions.

Before one such representation can be adopted, or created if it doesn’t exist, it is funda-

31
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mental to formalise its knowledge requirements, or in other words, what is the type of

knowledge that should be captured. This formalisation features prominently, for exam-

ple, in the ontology development methods reviewed by Jones et al. (1998). Knowledge

requirements are not only useful to test the suitability of existing knowledge repre-

sentations, but can also be used to guide the development of one such representation.

As such, they feature both in literature about ontology development (Suárez-Figueroa

et al. 2012) and on ontology evaluation (Vrandečić 2009).

A common approach to defining knowledge requirements, found for example in

the recommendations by Noy and Mcguinness (2001), is through the formulation of

competency questions (Grüninger and Fox 1995). Competency questions define, ei-

ther formally or informally, the type of queries that a knowledge base should be able

to answer. Since the use of competency questions for the definition of knowledge re-

quirements has been widely adopted in recent years, for example by Suárez-Figueroa

et al. (2012) and Ren et al. (2014), I have chosen this approach for the creation of a

knowledge representation of the domain of human instructions. I will describe this

methodology in Section 3.1.1.

Ensuring the satisfiability of the knowledge requirements is a crucial phase in the

definition of a knowledge representation. However, different representations can be

used to satisfy the same knowledge requirements, and other criteria can be consid-

ered. A common suggestion, found for example in the methodologies developed by

Fernández-López et al. (1997) and Suárez-Figueroa et al. (2012), is to reuse as much

as possible the terminology already used in the domain. This process allows both for-

mal and informal terms used in a domain to be directly mapped to the terms used in

the ontology. This makes the ontology more understandable by experts in the domain,

and generally more interoperable with other resources in the same domain (Suárez-

Figueroa et al. 2012). The knowledge representation discussed in this thesis aims

to close the gap between human and machine understandable representations. It is

therefore desirable to reuse, and potentially combine, the terminology used by humans

when communicating instructions, and the terminology used by machines to represent

formal processes. I will describe this approach in Section 3.1.2.

These methodologies provide a principled approach for defining a formal represen-

tation for the domain of human instructions. After this representation is available, it is

possible to test whether it can provide a solution to the central problem addressed in

this thesis by testing it in the remaining two sub-problems, namely know-how acqui-

sition and know-how applications. I discuss whether this type of representation can be
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extracted automatically from existing resources and whether it can support human ex-

ploration and execution of instructions in Sections 3.2 and 3.3 respectively. As pointed

out in Section 1.1, these two problems have conflicting requirements on the semantic

richness of the representation. By addressing both problems with the same knowledge

representation, I aim to demonstrate that the chosen representation is simple enough

to be acquired automatically yet expressive enough to enable machine automation in

novel applications.

It is important to mention that in order to acquire knowledge of a domain, ontol-

ogy development methodologies such as the one proposed by Fernández-López et al.

(1997) usually involve the intervention of domain experts. This intervention is neces-

sary when the domain experts and the ontology experts are separate individuals. How-

ever, given that the domain of human instructions is not a specialised domain, there is

no specific set of people that could be considered as authoritative domain experts. Con-

cepts found in human written instructions, such as “steps” and “requirements”, are not

formally defined and they are usually based on common sense knowledge. It should be

noted that the meaning of these concepts adopted in this thesis is based on my interpre-

tation and on that of those who collaborated with me on this project. Our interpretation

has been informally validated by exposing it to a wider audience, such as the research

community, and by running experiments which included crowdsourced human judge-

ments without exposing discrepancies between our interpretation and the interpretation

of others. Given the simplicity of the domain, and this preliminary evidence, I decided

that further experiments to validate the generality of our understanding of this domain,

although useful, were beyond the scope of this work.

3.1.1 Evaluating the Requirements of the Knowledge Representa-

tion

The satisfiability of a competency question with respect to a knowledge representation

can be proven mathematically (Department and Gruninger 1996). In practice, however,

the potentially large number and complexity of the competency questions can make

such an approach infeasible. This is particularly problematic for iterative-incremental

ontology development life-cycles (Suárez-Figueroa et al. 2012), where competency

questions might be modified and further refined across multiple iterations. In such

cases, an experimental evaluation of the competency questions seems preferable. For

example, following similar principles to unit testing (Method 19 in Vrandečić 2009).
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On this approach, a computational method, such as a database query, is created to

answer each competency question. The results computed by this method on a number

of test cases are then compared with the predefined set of expected answers; see for

example the OntoEdit tool developed by Sure et al. (2002). In this thesis, I will evaluate

the satisfiability of the competency questions using this experimental approach and

discuss the tests I performed. Good testing practices will be followed, in particular by

testing each competency question in a set of comprehensive test cases.

3.1.2 Evaluating the Reuse of Domain Terminology

When defining a formal representation of a domain it is a good practice to reuse as

much as possible of its existing terminology. I do this through a review of both informal

and formal representations of instructional knowledge. For each such representation,

I will review the terms which are relevant to the domain of human instructions. It is

important to notice that this review aims to identify the common terms that can be used

to represent instructions, and it is not meant to be exhaustive.

To review informal representations, I search for the main instructional websites

which contain domain-independent semi-structured textual instructions in English. I

conduct this search in two ways. The first is a keyword-based search of such web-

sites using a web search engine. The second is an analysis of existing reviews of

instructional websites. To decide which are the most important instructional websites,

I consider factors such as the number of instructions they contain, the number of users,

and their prominence within search engine results when relevant search queries are

asked.

In the second part of my review, I search for existing approaches that can be used to

formally represent instructions. Such formal representations feature in a large number

of different research and application fields. The first step of this review is therefore

the identification of the main fields that feature knowledge representations that are ap-

plicable to human instructions. In the second step, I review the terminology found in

specific approaches within the chosen fields. Given the large number of different fields

that feature formalised instructions, an exhaustive review of all the approaches would

be impractical. Instead, I focus on the most important approaches in the field, chosen

by virtue of their prominence in their field, and considering factors such as the number

of papers that describe them and their overall impact in terms of citations. Concepts

which are found in prominent papers found within relevant research areas will be as-
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sumed to be common terms that should be considered for reuse. However, due to the

lack of a thorough review of all the approaches in all of the relevant fields, common

terms used to describe processes other than the ones discovered by this method might

well exist.

3.2 Know-How Extraction Methodology

A common bottleneck for knowledge representations is the difficulty of populating

them with information about real-world entities. This process, sometimes called on-

tology population (Maynard et al. 2008 and Faria et al. 2014), knowledge acquisition

(Welty and Murdock 2006) or knowledge extraction (Gangemi 2013), typically relies

on manual efforts and sometimes on the availability of expert intervention. One of the

main drawbacks of such manual approaches is the difficulty in extracting knowledge

from large amounts of avaliable resources. This problem has led to the development of

automatic general-purpose knowledge extraction tools, such as the ones reviewed by

Gangemi (2013). However in domain-specific scenarios, such as medical procedures

(Song et al. 2011), ad hoc solutions might be required.

The know-how acquisition problem addressed in this thesis requires an effective

method to extracting knowledge from existing sets of instructions. I show this through

an experimental evaluation of a knowledge-extraction system. More specifically, this

knowledge extraction involves two steps: (1) the extraction of a formal representation

of instructions from existing web resources and (2) the integration of these represen-

tations into a unified knowledge base. I describe my methodology for evaluating these

two steps in Sections 3.2.1 and 3.2.2 respectively. The usefulness of a knowledge base

also depends on how effectively it can be shared and reused. I describe a methodology

to evaluate this last aspect in Section 3.2.3.

3.2.1 Evaluation of the Know-How Extraction Systems

The results of a knowledge extracting system can be evaluated in terms of how accu-

rately they represent the original knowledge contained in the sources they are extracted

from. Accuracy is often defined as a combination of precision and recall. In informal

terms, precision is a measure of what proportion of extracted facts are correct. A higher

level of precision allows us to be more confident of the truthfulness of the extracted

facts. Recall is a measure of how much of the original knowledge has been extracted. A
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higher level of recall allows us to be more confident that facts contained in the original

sources have been extracted.

In the human instructions domain, the evaluation of a knowledge extraction system

involves a comparison between the original web resources that describe instructions,

such as HTML pages, and the model of these instructions that results from the extrac-

tion. Human judgement might be required to compare the knowledge contained in

these resources. The method I propose for this kind of evaluation involves collecting

human judgements. More specifically, humans can be asked to provide answers for a

number of questions about a set of instructions. Example of possible questions are:

“what are the steps of the set of instructions x?” or “what are the requirements of task

y?”. I propose to use the competency questions described in Section 3.1 for this eval-

uation, since they are meant to capture the main types of knowledge that a knowledge

representation should formalise.

Two groups of informants should be considered, namely those that answer these

questions given the original sources, and those that provide answers given a human

understandable visualisation of the extracted knowledge. Precision and recall mea-

sures can then be calculated by comparing the answers given by these two groups. The

more the answers of both sets are similar, the more evidence we have that the accu-

racy of the extraction systems is high, with respect to the considered questions. The

main drawback of this evaluation is that it does not consider other types of knowledge

that are not captured by the chosen set of questions. For this reason, other types of

knowledge might exist that are not captured by the extraction system.

3.2.2 Evaluating Know-How Interlinking Systems

After extracting the representation of a number of sets of instructions, these repre-

sentations need to be integrated into a coherent knowledge base. This integration is

needed to determine which elements are the same, or how they relate to each other. To

perform this integration I will develop an interlinking system capable of automatically

discovering relations between the elements of the sets of instructions.

To evaluate the quality of the results of the know-how interlinking system, I will

compare the links automatically created by this system (population A) with the links

already existing in the set of resources I considered which are considered to represent

the same semantic relation (population B). The links in these populations can be seen

as ordered pairs of elements. For example, a human might have created an HTML
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link between two instructional web pages to indicate that more information about one

element of one set of instructions is provided by the other set of instructions. The

semantic interpretation of these links will be based on the official guidelines on how to

create such links published by the website hosting the links. Such guidelines will be

assumed to be followed by the user base of the website. A study on the extent to which

users follow these guidelines when creating links, however, has not been performed.

I will compare these populations using the same two metrics as with know-how

extraction, namely precision and recall. Precision will measure whether the links are

correct or not according to their semantic interpretation. For example, we can imagine

an interpretation of a link as a connection between a set of instructions and the output

that is generated by performing the set of instructions. Under this interpretation, a link

between a set of instructions on “how to make a pancake” and the object “pancake”

should be considered correct. A link between the same set of instructions and the

object “car”, instead, should be considered wrong. This type of judgements will be

collected using human evaluation.

This manual evaluation will be performed only on a randomly selected subset of

links for each population because the size of the populations of links is expected to

be very large. These manual evaluations of a sequence of randomly selected samples

from a population, each one resulting in a boolean judgement (correct or not correct),

can be modelled as a binomial distribution. The probability that one selected element

is classified as correct is interpreted as the precision metric that is to be evaluated. For

this reason, I will use the chi-squared test (Powers 2011) to determine whether there

is a significant difference between the two populations with respect to the precision

measure.

The recall metric is intended to measure the ratio of all the possible correct links

that is found within a population. Unfortunately, determining all the possible correct

links is not possible, due to the very large number of possibilities to consider, and the

absence of a gold standard. For this reason, my analysis will be limited to determining

which population has the highest recall by estimating the number of correct links it

contains. Since the number of all the possible correct links will be the same for both

populations, as they refer to the same set of instructions, the population with the higher

number of correct links will be considered to have higher recall. The number of cor-

rect links found within a population can be computed as the product of the precision

measure of the population with the number of links it contains.
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3.2.3 Methodology to Evaluate Linked Open Data Compliance

Linked Open Data represents the most prominent approach to publishing reusable se-

mantic data on the web. I will demonstrate that the methods I developed constitute a

sufficient pipeline to publish Linked Open Data in the domain of human instructions.

To evaluate this claim, I will evaluate my approach against the 5-Star Open Data rank-

ing system,1 which defines 5 necessary and sufficient criteria to determine whether

a dataset complies with the Linked Open Data principles. Four of these criteria can

be satisfied by well-defined qualitative properties, such as the adoption of a particular

data format. Compliance with these four criteria can therefore be easily validated by

demonstrating that my set of methods possesses these qualitative properties.

The last criterion of this ranking system relies on a quantitative measure by requir-

ing the dataset to be linked with other datasets. While the concept of link (or RDF link,

Bizer et al. 2009a) is well defined within Linked Data, the 5-Star Open Data ranking

system does not specify a measure of how linked a dataset should be. This last crite-

rion is mostly intended to convey the principle that concrete efforts should be spent in

linking datasets, and an exact threshold does not exist because it would be difficult to

define for all possible scenarios. To evaluate the compliance of my methods with this

last criterion, I will consider whether a significant number of links can be generated to

an important public dataset. I will consider DBpedia as an important public dataset,

given its importance within the Semantic Web community and its centrality within

the Linked Open Data Cloud,2 a graphical representation of the major interconnected

Linked Data datasets. To determine whether a significant number of links have been

found, I will evaluate whether at least one link is found for every set of instructions. I

have chosen this threshold based on an arbitrarily judgement, given the lack of more

precise guidelines applicable to this domain.

3.3 Know-How Applications Methodology

The main methodology I adopt to demonstrate the possible uses of formalised instruc-

tional knowledge is the development of prototypes. The development of prototypes

aims to demonstrate the feasibility of developing applications with a particular set of

features. I will discuss such features, and in case similar systems have already been

developed, like in the case of know-how exploration, I will clarify what new features

1http://5stardata.info/en/ (accessed on 17/10/2017)
2http://lod-cloud.net/versions/2017-02-20/lod.svg (accessed on 17/10/2017)
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the prototype offers. Contributions 5, 6 and 7 are evaluated using prototypes.

It should be noted that prototypes tend to be, by their very nature, incomplete

and unpolished systems; more suitable for demonstration purposes than for real de-

ployment. For this reason, I will not evaluate prototypes on the basis of quantitative

features such as usability or user rating. Instead, I will evaluate them on qualitative fea-

tures. More specifically, I will focus on functionalities that are novel and that cannot

be replicated by existing systems.

A concrete implementation that successfully replicates the desired features pro-

vides evidence that, within the scope of the given test conditions, the desired features

of the application are achieved. One limitation of this methodology is that the re-

sults obtained by testing the prototype are not guaranteed to be replicable on different

real-world deployments of similar systems. The extent to which the results obtained

by testing a prototype are generalisable can be increased by performing large-scale

evaluations in a diverse range of significant conditions. However, due to the practical

constraints derived from the need to test multiple such applications, smaller scale tests

and prototypes will be preferred.

3.3.1 Evaluating New Features for Know-How Exploration

A common application of formalised knowledge is supporting knowledge exploration.

An example of this is Google Knowledge Graph,3 which is a collection of structured

knowledge that is used to display more informative results to the users of a web search

engine. Formalised knowledge enables a user to achieve certain exploration goals in

qualitatively different ways. For example, a user might have the goal of discovering

the birth date of an important historical figure. Using a naive search engine, the user

will have to first search for documents related to the historical figure, and then have

to manually search this document to find the desired piece of information. Using for-

malised knowledge, however, the web search engine can immediately provide to the

user a number of facts about this historical figure, which might include the birth date.

In this example, the two approaches to achieve the user’s exploration goal are qualita-

tively different. In fact, the second approach does not require the user to retrieve and

inspect a web resource.

To evaluate the applications of a formal representation of instructions I will for-

mulate a number of exploration goals, and discuss their importance in the context of

3https://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-
things-not.html (accessed on 17/10/2017)
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discovering know-how. Then, I will demonstrate through the use of a prototype that

they can be achieved more efficiently by using the prototype than by using the original

websites where they were found. To do so, I will analyse the type of users’ actions re-

quired to achieve an exploration goal using a certain system. These actions will belong

to a category, such as clicking links, scrolling through options, or reading paragraph

of text. A system A will then be said to be more efficient than a system B in achieving

a certain goal X if the actions required to achieve the goal in system A are a subset

of those required by system B. This notion of efficiency assumes that users have an

interest in achieving an exploration goal with as few actions as possible.

It should be noted that this type of analysis does not consider quantitative differ-

ences between the same type of actions. More specifically, I will make the simplifying

assumption that all actions in the same category are equal. In reality, however, this

might not be the case. For example, two clicking actions might have different levels of

usability, as users might prefer clicking a larger and more visible link than one which

is small and harder to see. However, I consider such differences as outside the scope

of this project by making the assumption that they do not depend on the underlying

knowledge representation used, but on the details of the user interface instead.

3.3.2 Evaluating a Method for Decentralised Know-How Exploration

Knowledge on the web is spread across multiple resources, and human expertise is

typically needed to find and integrate related knowledge. For example, the solution

to a complex problem might require the integration of multiple sets of instructions.

Formalised knowledge about instructions can be used to replicate part of this human

capability. However, typical approaches to navigate formalised knowledge assume the

availability of a centralised knowledge base.

In Section 7.2 I propose an approach to allow machines to search and integrate web

data dynamically. To evaluate whether such approach allows decentralised exploration

of instructional knowledge, I define the fundamental requirements of the approach.

From the definition of these requirements it should be possible to infer that a system

that fulfils these requirements can achieve decentralised exploration of instructions.

A full formalisation of this system to mathematically prove this hypothesis is out-

side the scope of this thesis. Instead, I will evaluate the hypothesis using a semi-formal

description of my approach and demonstrate how it supports the goal of decentralised

exploration. I compensate for this lack of formality, which is a potential danger for
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ambiguity, with a practical implementation of this approach. To do so, I will create a

prototype and experimentally verify that it enables the intended goal.

3.3.3 Evaluating a Method for Know-How Execution

An ambitious use of formalised human instructions is to allow machines to actively

collaborate with humans in the execution of such instructions. In particular, I will focus

on sets of instructions that cannot be fully automated but might benefit from partial

automation. For example, a human could write a set of instructions on “how to organise

a workshop”. While certain steps of this process should arguably be done by a human,

such as the choice of the topic of the workshop, other steps could be automated, such

as the dissemination of information about the workshop through different channels.

Assuming that a formal representations of human instructions is available, can a

know-how execution system use it to support collaboration between humans and ma-

chines? The evaluation of such a system is not trivial, and addressing it involves

demonstrating the existence of a technical solution to develop such a system, and

demonstrating that it can be used in practice.

I demonstrate the existence of a technical solution by proposing a concrete method

that, given a formalised set of instructions, enables human and machine to collaborate

in executing that set of instructions. This method can be tested by implementing it in

a prototype. Once a prototype has been developed, its applicability in practice can be

evaluated.

The practical applicability of such a system depends on several of factors. An

important factor is the number and complexity of tasks that the system can automate.

A system that can automate a large number of complex tasks is likely to be more

useful than one that can only automate a small number of trivial operations. A related

factor is the domain of the set of instructions. Instructions in certain domains, such

as computers and technology, might contain significantly more automatable tasks than

other domains, such as social know-how. For example, we might expect to find more

automatable steps in the set of instructions on “how to update your operating system”

than in the steps of the set of instructions on “how to find inner peace”. Another

relevant factor is the user interface for interacting with the system. Different interfaces

might make it easier or harder for humans to write instructions and collaborate with

machines.

A thorough analysis of all these factors would be a major undertaking and it is



Chapter 3. Methodology 42

beyond the scope of this thesis. For this reason, I limit the evaluation of the practical

applicability of the prototype to a single scenario. That is, I define a single task and

create a number of automatable functionalities that should be relevant to this task.

Then, I evaluate whether humans can successfully create a set of instructions to achieve

that task that can be executed both by humans and machines using the prototype.

To perform this evaluation, I describe the task to a number of human participants,

and then ask them to create a set of instructions on how to achieve the task. The practi-

cal applicability of the prototype in a practical scenario will be considered successful if

the contributions provided by the participants result in instructions that can be partially

automated by the prototype. Human participation in this experiment is gathered using

a crowdsourcing platform.

This type of evaluation will provide preliminary insights into the challenges in-

volved in developing this type of instruction-based collaboration between humans and

machines. If successful, it will demonstrate that this type of collaboration is possible

in a specific scenario. Obviously it does not provide information on the generality

of this approach and on the extent to which it would be applicable to other types of

instructions, but nevertheless seems adequate as a proof of concept.

3.4 Conclusion

In this chapter I have described my methodology to address the three main problems

discussed in this thesis, namely know-how representation, know-how acquisition and

know-how applications. The significant differences between these problems result in

the need for significantly different methodologies. In the following chapters I will

adopt these methodologies to evaluate the concrete hypotheses that constitute the main

findings of my work.
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Know-How Representation

In order to represent procedural knowledge, a suitable knowledge representation for-

malism needs to be adopted. Before moving to the details of the formalisation, I will

describe in abstract terms what this formalism should conceptualise, or in other words,

an abstract model of human-made procedures and their execution. This formalisation

should be able to describe human step-by-step instructions and their potential execu-

tion following a to-do checklist approach.

Two main aspects appear to be common in step-by-step instructions. The first one

is the decomposition of tasks into simpler ones, and the second is the organisation of

tasks into workflow structures, such as a sequential ordering of steps. These aspects

can be consistently found across all of the related work on instructional knowledge

acquisition reviewed in Section 2.3.1.

Throughout this thesis, I will use the term task to refer to “something that can

be accomplished”. In this context, step-by-step instructions, such as instructions on

“how to prepare a pancake” can be seen as explanations of how to achieve a particular

task, such as “preparing a pancake”. This task can be said to be the goal of the set

of instructions. The goal of a set of instructions is typically decomposed into a set of

smaller sub-tasks, or steps, such that the completion of some or all of these sub-tasks is

equivalent to the completion of the main task. The term step, therefore, refers to tasks

that are used to decompose other tasks. Different ways to decompose the same task

might exist, thus representing different alternative ways, or methods, to accomplish a

goal. Moreover, sub-tasks might need to be executed following a certain total or partial

ordering. This ordering can be thought of as dependencies between the tasks.

Regarding the execution of a set of instructions, there is no single approach univer-

sally adopted by humans. In order to limit the complexity of the problem, the notion of

43
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executing instructions in this thesis is limited to a single approach, namely following a

to-do checklist. The execution of a to-do checklist to complete a task, or goal, x can be

seen as the process of assigning the value of checked to previously unchecked sub-tasks

of x once they have been executed and completed. This process is generally contin-

ued until their combined completion can be considered equivalent to the completion

of the goal task x, which is then also marked as checked. The process of completing a

checklist is visualised through a set of check-boxes, which represent the execution of a

specific sub-task. As a check-box can be checked or unchecked, the execution of task

can have the property of being accomplished or not.

Tasks can be accomplished multiple times, and the concept of a specific checklist

can be seen as the context, or environment, in which tasks are executed. For example,

the act of repairing the tire of a car is only relevant to a specific car, and only within

a limited time period. After some time, the tire might get punctured again, and the

same process of fixing it might have to be repeated. Therefore, multiple checklists to

complete the same task might exist.

This simplified notion of execution has been chosen for three main reasons. The

first one is the commonality of this approach. It can be argued that achieving a goal by

following a checklist is a commonly used and well understood concept. The second

reason is the simplicity of its representation. The level of completion of a task is

simplified to a boolean value: either complete (checked) or incomplete (unchecked).

The last reason is that this approach involves explicit logging of the execution state.

Information on the current state of the execution of a set of instructions is a crucial

piece of information that is needed, for example, to determine which task should be

performed next. Humans often complete instructions without the need to explicitly log

the state of the execution. When following simple instructions, it might be possible to

determine the current state of execution just by resorting to memory, or by looking for

cues in the environment. For example, a pot of boiling water can remind us that the

action of boiling the water has already been performed.

Machines, on the other hand, do not have direct access to the user’s memory. While

machines could use sensors in an environment to determine the state of the execution,

for example by trying to recognise activities using computer vision (Ke et al. 2013),

this process would require dedicated sensors and sophisticated AI processing. This

problem can be avoided if users explicitly log the state of the execution using a check-

list approach. Checking items on a checklist results in a small overhead for the users.

Nevertheless, it is a popular technique as it allows humans to recall the state of the
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Figure 4.1: Overview of the various topics discussed in this chapter and how they feed

into each other.

execution at a later time, or to easily communicate it to external collaborators.

Instead of describing human instructions and their execution separately, I choose

to combine them in a unified model. This unification allows me to provide definitions

of the various components of a set of instructions with respect to their execution. For

example, it is possible to define what it means for something to be the “step” of a set

of instructions by defining how this information should affect our decisions on how to

execute that set of instructions.

4.1 Chapter Overview

Figure 4.1 illustrates the various components of this chapter. In the introduction, an

abstract model of the domain of instructions and their execution was described. This
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abstract model is then turned into a set of knowledge requirements (Section 4.4). An

analysis of ontological and non-ontological resources (Sections 4.6 and 4.5) related

to this domain is then integrated into a set of common terms and knowledge patterns.

This information is then used to create a formal model that satisfies the predefined

knowledge requirements (Section 4.7), which in turn is materialised into a concrete vo-

cabulary (Section 4.8). The proposed model is also translated into an existing planning

language (Section 4.9) to show how it can be mapped to pre-existing formalisations.

A set of queries defined over the vocabulary is used in combination with a number of

algorithms to validate the predefined knowledge requirements. Full details of these

queries and algorithms is given, respectively, in Appendices C and D. Finally, these

algorithms and queries are implemented and tested to verify their correctness.

4.2 Problem Description

The general hypothesis proposed in this chapter is that a knowledge representation

formalism, sufficiently expressive to model the instruction and checklist domain, can

be described with concepts which are common both in the informal representations of

this domain created by web users and in those created by experts to represent processes.

This general hypothesis can be split into two more specific hypotheses.

The first hypothesis addresses the question of whether the proposed model is suffi-

ciently expressive to model this domain. It is formulated as follows:

Hypothesis 1. The competency questions that define the knowledge requirements of

the instructions and checklist domain are answerable by the proposed knowledge rep-

resentation formalism.

The proposed knowledge representation formalism will be described in Sections

4.7 and 4.8. The competency questions that define the knowledge requirements for

this domain will be explained in more detail in Section 4.4. This hypothesis will be

validated in Section 4.10. Although there is no definitive measure of how well a set of

knowledge requirements enables a formalism to be used in a domain, an argument as

to why the selected requirements are relevant to the instruction and checklist domain

is presented in Section 4.4.

The second hypothesis is formulated as follows:

Hypothesis 2. The proposed knowledge representation formalism uses concepts that

are common in instructional websites and in formal process description languages.
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Evidence in favour of the second hypothesis will be presented in Sections 4.5 and

4.6. The knowledge extraction performed on instructional websites and described in

Section 5.1.1 can be considered as further evidence of the similarity of the proposed

model with web instructions. Moreover, the translation of the proposed formalism into

a standard planning language described in Section 4.9 can be considered as additional

evidence of its compatibility with pre-existing process description languages.

4.3 Domain Formalisation Method

When it comes to formalising a domain, many choices can be made. Guiding principles

on how to make these choices come from the field of Ontology Engineering, such as

the methodology developed by Sure et al. (2009). The formalisation of a domain, i.e.

an ontology, can be seen as a component of the Ontology Engineering life-cycle. This

component typically involves activities such as formulating high-level specifications,

acquiring domain knowledge, and developing progressively more formal models until

an ontology is made. This can be a very cyclic process, where mistakes or newly found

pieces of information can cause the process to return to previous phases.

In this thesis, I have chosen to formalise this domain by following the NeOn

method for Ontology Engineering proposed by Suárez-Figueroa et al. (2012). This

was chosen because it provides a simple and flexible set of recommendations for a

number of scenarios which are similar to the scenario at hand.

Within the NeOn method, I have chosen a waterfall life cycle. Unlike iterative or

incremental life cycles, the waterfall approach aims to generate a useful formalisation

of a domain following a single and linear sequence of phases. This life cycle is recom-

mended by the NeOn method for ontologies which cover a small and well-understood

domain. Although there is no exact definition of the small and well-understood crite-

ria, I argue that the core concepts behind step-by-step instructions and to-do checklists

are few and simple, thus fulfilling the small criterion. Moreover, this is a domain that

a large amount of non-expert web users use on a daily basis. Therefore, it can be said

to be a well-understood domain.

In the NeOn method, the decision as to which phases to conduct during the wa-

terfall approach depend on the context in which the formalisation is to be developed.

In the context of this thesis, it can be observed that there exists an abundance of both

unstructured resources, such as instructional websites, and structured resources, such

as process description languages. This situation relates to two of the nine scenarios de-
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scribed in NeOn, namely “Scenario 2: Reusing and re-engineering non-ontological re-

sources” and “Scenario 4: Reusing and re-engineering ontological resources” (Suárez-

Figueroa et al. 2012). These scenarios correspond to a six-phase waterfall life cycle,

composed of the following phases (1) initiation, (2) reuse of ontological and non-

ontological resources, (3) re-engineering of ontological and non-ontological resources,

(4) design phase, (5) implementation phase and (6) maintenance phase.

The method presented in this thesis follows this six-phase waterfall life cycle, with

the exception of phases 2 and 3. In the NeOn method, these two phases differ in their

focus, which is re-use for the second, and re-engineering for the third. The method

adopted in this thesis instead partitions the content of these phases in a different way,

focusing on non-ontological resources in phase 2, and ontological resources in phase

3. The proposed method, composed of the following six phases, will now be described.

First Phase The first phase of this cycle is the initiation phase. The main goal of this

phase is the definition of a set of requirements that will guide the formalisation of the

domain. These primarily consist of a set of minimal functional requirements that the

formalisation should fulfil.

Second Phase The second phase is the reuse and re-engineering of non-ontological

resources phase. During this phase existing non-ontological resources will be con-

sidered for inclusion in the formalisation of the domain. If such resources cannot be

directly used in the formalisation of the domain, the option of adapting them, or “re-

engineering” them to suit the needs of the domain will be considered. This phase

will focus on collecting relevant resources and “reverse-engineering” their underlying

structure and components.

Third Phase The third phase is the reuse and re-engineering of ontological resources

phase. This phase can be considered equivalent to the previous phase with the excep-

tion of considering ontological resources instead of non-ontological ones. This phase

will focus on searching for and comparing ontological resources, as well as deciding

at which level of abstraction they can be reused or re-engineered.

Fourth Phase During fourth phase, called the design phase, the terminology and

patterns discovered in the previous two phases are used to formalise a data model,

which defines the type of information the formalism will represent. This model does
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not need to be directly computable.

Fifth Phase The fifth phase, called the implementation phases, involves the materi-

alisation of the model defined in the previous phase into a concrete representation of

the model using a computable data format.

Sixth Phase The six phase, called the maintenance phase, is triggered in case errors

are discovered in the formalisation, or if new versions of the formalisation need to be

created. Updates and error-fixes are common to most ontology life cycles, just as bugs

are pervasive in computer programming. However the details of such procedures are

not relevant to this thesis and therefore this phase will not be described in detail.

4.4 First Phase: the Definition of the Knowledge Re-

quirements

The first phase of the NeOn method focuses on the definition of a set of knowledge

requirements. Knowledge bases are a type of database, and the main purpose of a

database is to provide information by answering queries. It is therefore natural to

define the minimum functionalities required by a knowledge base in terms of queries.

To do so, I define a set of competency questions, namely the set of queries that the

knowledge base should be able to answer.

In order to define these competency questions, I will consider two core applications

of a knowledge representation formalism that models instructional knowledge. The

first one is the use of this knowledge to discover information on how a task can be

completed. Intuitively, this is the typical use of a set of instructions. The second

application is the use of this knowledge to track the execution of a task using a checklist

approach.

In this thesis it is assumed that when a user is reading a set of step-by-step instruc-

tions to complete a specific task, he or she is interested in answering at least one of the

following two questions:

Q1 What requirements must be satisfied before performing the task? In other words,

how can the user determine whether the task can be performed? Typical answers

to this questions include the ingredients required by a recipe, or more abstract
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conditions, such as the requirement “it must be night-time” for a set of instruc-

tions on “how to stargaze”.

Q2 How can the task be completed? Or in other words, how can the task be decom-

posed into simpler tasks? A typical answer to this question would retrieve the

list of steps of the set of instructions.

If we consider the second application, we can now imagine a user accessing a to-do

checklist to complete a set of instructions. I will assume that such user is interested in

answering at least one of the following six questions.

Q3 Which tasks are in the checklist? A user might be simply interested in viewing the

various elements of the checklist.

Q4 Which tasks have been completed in the checklist? In other words, which tasks

have been already checked off?

Q5 Which tasks are ready to be completed in the checklist? Checklists can enforce

the ordering in which tasks should be completed. This ordering can determine

which tasks can or cannot be completed at any given moment. It should be noted

that not all tasks which can be completed should to be completed. Tasks which

should be completed are the focus of question Q7 instead.

Q6 Which tasks are being completed by following a separate checklist? Complex

sets of instructions might be decomposed into more than one checklist in order

to provide a more structured view of all the tasks that needs to be completed.

A user looking at a checklist might want to discover which of its elements are

decomposed by other checklists.

Q7 Which tasks can be completed at the current time to advance the progress towards

completion of the checklist? Arguably, this question captures the main purpose

of a checklist, namely to be able to determine what is the next step that should

be performed.

Q8 How can a checklist to complete a task be generated from a set of instructions?

If a checklist does not already exist, a user might be interested in creating one

based on an existing set of instructions.

A more formal definition of these queries will be presented in Section 4.7.3. These

competency questions, which are here described in natural language, will be formally
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defined by taking into account the terminology of the chosen knowledge representation

model.

4.5 Second Phase: Reuse and Re-Engineering of Non-

Ontological Resources

The second phase of the NeOn method focuses on the reuse or re-engineering of rele-

vant non-ontological resources, and in particular instructional web pages. This phase

addresses the question of what kind of knowledge can be extracted from instructional

web pages. The goal of this analysis is to identify the most important components,

such as “steps”, that are used to represent step-by-step instructions. This analysis is

not concerned with domain dependent aspects, such as “cooking time” or “computer

requirements”, which are common in certain domain, but uncommon in others.

Following the methodology described in Section 3.1.2, I have adopted a number of

search methods and selection criteria to identify relevant instructional websites to anal-

yse. The selection criteria used to determine whether a website should be considered

are the following:

• The website contains textual instructions in English.

• The website is domain-independent. More specifically, it should contain sets of

instructions from different domains, such as the cooking, technology and DIY

domains.

• The website is large. I will consider websites with over 10K sets of instructions

to be large.

Other criteria that could be used to estimate the importance of a website are factors

such as the average number of active users and content creators. However, due to the

difficulty in obtaining these user statistics for all the websites, I have chosen not to

consider them.

Having defined these selection criteria, I have applied two search methods to dis-

cover relevant instructional websites. The first method is based on a keyword-based

search using web search engines. The second method searched for mentions of instruc-

tional websites in online reviews. These reviews were discovered using keyword-based
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Website Number of articles Tasks Steps Step ordering Requirements Methods

eHow3 >3M (2011) l l l l 6

Instructables4 >245K (2016) 3 l l l 6

wikiHow5 >195K (2016) 3 3 3 l l

WonderHowTo6 >100K (2008) l l l l 6

Snapguide7 >44K (2014) 3 3 3 l 6

Howcast8 >30K (2016) 3 3 3 l 6

Table 4.1: The occurrence of instructional concepts across some of the main instruc-

tional websites indicated as “always” (3) “sometimes” (l) and “non-present” (6). The

number of published articles in English and the year of this measurement is also given.

search using web search engines. This search method can also be considered as a crite-

ria to select prominent websites. Prominent websites, in fact, are more likely to feature

in online reviews and to rank higher in search engine results.

I have conducted this search using the Yahoo1 and Google2 search engines, con-

sidering only the first two pages of results. When applying the first method, I have

used keywords such as: “how to”, “step by step” and “instructions”. When applying

the second method, I have searched for reviews using keywords such as: “instructional

websites”, ‘how to websites”, “best” and “review”.

On the basis of this search, I have identified six websites that match the selection

criteria. These websites are listed in Table 4.1, along with information on the number

of articles that they contain. After identifying these websites, I have analysed several

sets of instructions for each website to discover the main components that these web-

sites have in common. The occurrence of these components in each website is also

detailed in Table 4.1.

The most important component, which can be found in all step-by-step instructions,

is the notion of what can be expected to be accomplished after following the set of

instructions. In my instructional model this is called a task. More specifically, this

term is used to refer to things which can be accomplished, or in other words “checked-

off” from a to-do list. Under this definition, the term task can be used not only to

1https://yahoo.com/ (accessed on 17/10/2017)
2http://www.google.com/ (accessed on 17/10/2017)
3http://www.ehow.com/ (accessed on 17/10/2017)
4http://www.instructables.com/ (accessed on 17/10/2017)
5http://www.wikihow.com/ (accessed on 17/10/2017)
6http://www.wonderhowto.com/ (accessed on 17/10/2017)
7http://snapguide.com/ (accessed on 17/10/2017)
8http://www.howcast.com/ (accessed on 17/10/2017)
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refer to the main goal of a set of instructions, but also to its sub-tasks, and even to the

process of satisfying certain preconditions, such as obtaining the required tools and

ingredients.

Requirements such as “1 liter of milk”, in fact, are interpreted in the context of the

execution of task as the process of “obtaining” such a requirement. In a to-do list, the

ingredient “1 liter of milk” can be checked off after it is bought at a store, in a similar

way as the step “boil the milk” can be checked off after it is performed. Therefore

the distinction between actions and objects, which is fundamental to most artificial

process formalisations, becomes blurred in the domain of human-written instructions.

A cooking recipe, for example, could mention the ingredient “milk” as an input, or it

could mention “get milk” as one of its steps. In such a situation, the choice of whether

to represent something as an object or as an action is arbitrary, and it should not lead

to semantically different formalisations. Therefore, this concept of task diverges from

typical process formalisations in that it does not enforce a distinction between actions

and objects. If this distinction is required, it can be easily implemented as a specifi-

cation of the concept of task, for example into the sub-concepts of “action task” and

“requirement task”.

The second most important component, which can be found in virtually all step-

by-step instructions, is the notion of a step. The main task that a set of instructions

describes can be decomposed into a set of steps such that the completion of those steps

is equivalent to the completion of the main task.

Another common component is the notion of dependency between tasks. A task

depends on, or requires, another task, when the former should be executed before

the completion of the latter. A common type of dependency can be inferred by the

ordering between steps, where the possibility of completing one step can depend on

the condition that the previous step has already been accomplished. Given that tasks

can also represent the requirements of a set of instructions, the notion of dependency

also captures the notion of the requirements of a task, such as a list of ingredients. The

task of gathering such ingredients is a requirement of the steps that make use of those

ingredients.

The last core component found across instructional websites is the concept of meth-

ods. Across all domains of know-how one can observe that for every task that one

might want to accomplish, multiple approaches to solve it are possible. This is true

even if an optimal set of instructions to accomplish a task is known. In practice, it is

very common to find similar sets of instructions that can be followed to achieve the
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same goal. For example, multiple pancake recipes can be found on the web. Although

they might lead to the creation of different types and flavours of pancake, they can

all be said to achieve the generic goal of “creating a pancake”. These instructions can

therefore be said to be different methods to achieve this goal. On the website wikiHow,

different sets of instructions to achieve the same goal are explicitly called “methods”.

4.6 Third Phase: Reuse and Re-Engineering of Onto-

logical Resources

The third phase of this method focuses on the reuse or re-engineering of relevant on-

tological resources and, more specifically, process representation languages. To do

so, I follow the methodology described in Section 3.1.2. This methodology involves

identifying the most relevant fields where process representation languages are used,

and then analysing the most prominent approaches of each field. These approaches

will be analysed to incorporate as far as possible the best practices, terminology and

knowledge patterns that have proven successful in the past.

The body of work on formalising processes is extensive and it comes from several

fields. A review of the most related ones has been presented in Section 2.2. From

this review, five main areas can be identified, namely Automated Planning (AP), Web

Services (WS), Semantic Web (SW), Social Computation (SC) and representations

of human instructions (HI). The AP and WS fields have been chosen because of their

strong focus on the representation and automation of processes. The SW field has been

chosen because it aims to provide reusable semantic representations of knowledge,

including procedural knowledge. The SC field has been chosen because it investigates

processes and interactions between multiple humans and machines. Finally, I have

collected under the HI area a number of approaches that extract information about

human instructions from textual documents. Although HI approaches primarily focus

on knowledge extraction, they also provide tangible examples of how such knowledge

can be represented.

Having identified a set of relevant fields, I have searched for the most relevant

approaches in these fields using Scopus9, Web of Science10 and Google Scholar11

9https://www.scopus.com/ (accessed on 17/10/2017)
10http://ipscience.thomsonreuters.com/product/web-of-science/ (accessed on

17/10/2017)
11http://scholar.google.com/ (accessed on 17/10/2017)
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Area Name Publication Citations

Web of Science Scopus Google Scholar

AP PSL Grüninger and Menzel (2003) 79 109 187

AP PDDL Mcdermott et al. (1998) - - 1382

AP HTN Erol et al. (1994b) 104 271 778

WS OWL-S Martin et al. (2007) 187 318 778

SW Schema.org Guha et al. (2016) 3 12 35

SW Activity Streams Guy et al. (2011) - 26 43

SC CompFlow Luz et al. (2014) 2 2 4

SC CrowdLang Minder and Bernstein (2012) 14 24 46

HI Recipe Model Kiddon et al. (2015) - 9 10

HI Situation Ontology Jung et al. (2010) 11 28 52

HI Medical Ontology Song et al. (2011) - 13 24

Table 4.2: Existing process formalisation approaches that are highly relevant to the

knowledge representation problem discussed in this chapter. The area each formalism

belongs to is listed under the column Area: Automated Planning (AP), Web Services

(WS), Semantic Web (SW), Social Computation (SC) and human instructions (HI). The

name of the approach and its main related publication are listed, respectively, under

columns Name and Publication. The remaining columns provide the citation count of

the papers given by three academic search engines, or the symbol “-” if the paper could

not be found. The citation count was updated on September 2017.

academic databases and search engines. This search was based on keyword searches

and it made use of existing literature reviews of the different fields.

The approaches I have selected, and the field they belong to, are listed in Table

4.2. This table also details the main academic publication of each approach along

with its citation counts provided by the three academic search engines. These citation

counts are provided only as a partial indication of the impact of the approaches, and

I have taken into account other factors when evaluating their overall importance and

relevance.

Being mature fields, it is not surprising that AP and WS approaches generated

high impact in terms of citations. In the AP field I have chosen PDDL, HTN and

PSL not only because they are well established approaches, but also because of their

qualitative differences. In particular, HTN is a major alternative planning paradigm to

classical planning, of which PDDL is a prime example. PSL on the other hand, is an

international standard more focussed on the representation of business processes and

workflows. In the WS field, many formalisms have been developed to represent Web
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Services. Amongst those I have chosen to analyse OWL-S because it is a well estab-

lished and because it aims to provide reusable semantic representations of services.

In the SW area, Schema.org was chosen as it is the major industry-led standard to

semantically enrich web resources. The work on Activity Streams was chosen, instead,

because it is an official recommendation of the W3C consortium.

My research did not find well established standards in the SC and HI areas. For

this reason, I have chosen to review a number of approaches that, despite not being

widely adopted yet, are highly relevant to the work presented in this thesis. In par-

ticular, the approaches I have chosen in the SC field describe formal representations

of processes involving multiple humans and machines. The chosen approaches in the

HI field, instead, describe formal representations of human instructions extracted from

natural language texts.

Having identified a number of relevant ontological approaches to represent proce-

dural knowledge, I proceeded to analyse them to identify semantically similar concepts

which are common across these approaches. Table 4.3 lists the most relevant concepts

that I have identified, along with the terminology used by each approach to refer to that

concept, if present.

Similarly to the analysis on the non-ontological resources, it is not surprising that

the concept of a task (also called “action”, “activity”, “process”, “method” or “direc-

tion”) appears in virtually all of the formalisations. The concept of the execution of a

task (also called “activity occurrence”, “activity”, or “action”), although common, is

not found in all of the languages. This is partially the result of several of those lan-

guages describing processes, but not the execution of these processes. The concept

of an environment, namely the context in which activities are executed, is often not

explicitly described. This is a result of the fact that languages that describe the execu-

tion of tasks might assume a single environment where the execution takes place. For

example, the solution to a PDDL problem is a list of instantiated actions. This list can

be interpreted as an environment, and each item in the list as an execution. However,

PDDL does not have an explicit representation of these concepts.

In most of these formalisms, tasks can only be executed when their dependencies

are satisfied. These dependencies can be called “preconditions”, “truth constraints”,

“inputs”, the constraints of a “sequence flow”, “connections” or “sequence relations”.

The abstract notion of dependency is often specialised in one of three variants (1)

inputs, when a task requires the availability of an object, (2) preconditions, when a

task requires a proposition to be true, and (3) ordering, when a task requires another
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task to have already been executed.

The concept of effects is quite common across procedural languages, and it de-

scribes which assumptions can be made after an action has been executed. It is usually

specialised into two types: (1) postconditions, which refer to the propositions which

can be assumed to be true after the task has been executed, and (2) outputs, namely

the objects that can be assumed to be available after the task has been executed. The

concept of method describes one or multiple ways to complete a task. A method can

be interpreted as which task can be assumed to be complete after another one is ac-

complished. In this last case, a method can be seen as a type of effect. It should

be mentioned that the term “postcondition” can have a very different interpretation in

some other contexts, as it could refer to the set of conditions that a planner needs to

guarantee to be true after a task has been executed.

Another common concept is the concept of a decomposition (also related to the

terms “step”, “composite-process”, “divide-and-conquer”, “subactivity” or “expan-

sion”). This concept expresses the fact that the execution of a set of tasks (or sub-tasks)

is one possible way to complete another task (or super-task).

The decomposition of one task into a different set of tasks is usually motivated by

the need to decompose a complex task into a set of primitive activities. A primitive ac-

tivity is usually defined as an activity that can be completed directly without requiring

further refinement or decomposition.

The concept of variable bindings is common within the web-service community to

indicate how the inputs and the outputs of different services can be linked to each other

to compose the services together.

Entities which are not tasks are sometimes classified as agents, objects, locations

and times. Agents (also called “actors”, “participants” or “workers”) represent the

entities which are responsible for completing activities. Objects (also called “items”,

“ingredients” or “targets”), on the other hand, typically represent things which do not

have agency. The notion of location and time (also related to the terms “duration” and

“timepoint”) are also common in domains where the actions need to be timed carefully

and performed in specific locations. Although widespread, the use of the terms agents,

objects, locations and times is typically context dependent. For example, the term

agent might not need to be specified in a scenario where only one agent is performing

a task, and the term object might not be needed to perform activities which do not

require the manipulation of specific objects.
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Base Predicates Short Description

taskpxq x is a task

executionpiq i is an execution of a task

environmentpeq e is an environment

has steppx,yq y is a step of x

has methodpx,yq y is a method of x

requirespx,yq x requires y

requires onepx,yq y is a sufficient requirement of x

has taskpi,xq i is an execution of task x

has envpi,eq i is an execution in environment e

has goalpe,xq environment e has the goal to complete x

successpiq execution i has succeeded

sub envpe,aq e is a sub-environment of a

has valuepi,vq execution i resulted in value v

has constantpx,vq task x is associated with constant v

bindspx,yq if y is complete in an environment,

so is x in all its related environments

Derived Predicates Short Description

finishedpeq environment e has achieved its goal

activepeq executions in environment e can become ready

completepx,eq task x has been completed in environment e

readypx,eq task x is ready to be executed in environment e

relatedpe,aq environments e and a are related

valuepv,x,eq v is the value of task x in environment e

Table 4.4: The logical predicates of the PROHOW model along with a short description

of their meaning.

4.7 Fourth Phase: Data Model

The fourth phase of this method involves defining a data model based on the on the

terminology identified in the previous two phases. This terminology points at the

following four main concepts used to describe instructions: (1) tasks, (2) steps, (3)

methods and (4) requirements. The execution of a task can be represented with the

concepts of: (1) environments, (2) executions, (3) the goal of the environments and (4)

the status of completion of an execution. Having already discussed the relevance and

meaning of these terms, this section combines this terminology with the knowledge re-

quirements acquired in the previous phases to formalise the PROcedural know-HOW

(PROHOW) data model using First Order Logic (FOL). Sufficient and necessary defini-
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Class Variable Names

Task x y z

Execution i u j

Environment e a o

Thing v

Table 4.5: Variable naming convention adopted in this chapter. The variables listed in

this table can be assumed to refer to entities of the given class.

tions of terms will be denoted by the ðñ symbol, which represents a logical bicon-

ditional connective. Sufficient definitions will be denoted by the backward implication

symbol ðù, which is equivalent to the FOL implication connective if the antecedent

and consequent are exchanged. The predicates used in this model are listed in Table

4.4. The base predicates are those that need to be explicitly asserted to be considered

true, while the derived predicates can remain implicit as they can be derived from the

base predicates. As an aid to the reader, the variables used in the logical axioms will

follow the convention shown in Table 4.5.

Figure 4.2 illustrates the predicates of the PROHOW model with respect to the unary

predicates task, execution and environment, which represent the three main types, or

classes, of this model. A formal definition of the relations between predicate and

classes will be given in Axiom 23. In this figure, classes are represented as rectangles.

Binary predicates are represented by an arrow from the class of the first variable to

the class of the second variable. The unary predicates success, finished and active

are represented as rounded rectangles linked to the class of its variable. The ternary

predicate value is represented by two dashed connectors ending in a round circle and

an arrow, starting from the class of its first variable and ending, respectively, at the

classes of its second and third variables.

4.7.1 Working Example

To better explain the PROHOW model this section introduces two sets of instructions

as a working example. These instructions are represented as HTML web pages.12

Figures 4.3 and 4.4 display screenshots of these web pages as they are displayed by a

web browser. For the sake of simplicity, these examples have been created to be very

12These web pages are available here: http://paolopareti.uk//r/sampleinstructions.htm
(accessed on 17/10/2017)
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Figure 4.2: A model of the PROHOW predicates as a set of classes, relations and prop-

erties representing the axioms of Axiom 23.

concise.

In this example, the manager of a café has decided to publish a number of sets

of instructions online for the employees of the café to follow. Figure 4.3 represents

one such set of instructions, which explains how to serve pancakes in the café. This

set of instructions only includes four steps. First the employee needs to receive a

pancake order. Then, he or she will start preparing the pancake. After that, the cost

for the pancake will be calculated, and then the payment will be made by the client.

The manager has linked the second step to another web page which explains how the

pancake should be prepared.

This second web page, displayed in Figure 4.4, details a number of ingredients and
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Figure 4.3: A screenshot of the example web page containing restaurant instructions.

The step “Prepare a Pancake” contains a link to the set of instructions in Figure 4.4

Figure 4.4: A screenshot of the example web page containing a pancake recipe.

the steps to follow in order to prepare the pancake. To complete this set of instructions,

the employees first need to gather the necessary requirements. They have a choice of

using a pre-made pancake mix, or alternatively to use eggs, milk and flour. They can

then follow the steps to cook the pancake. It should be noted that whenever steps are

presented as a numbered list, it will be assumed that they need to be performed in the

same order as they appear in the list.

Additionally to these web pages, the manager provides the employees with an inter-

face where they can can log their progress as they follow instructions using a checklist

approach. For example, whenever an employee is preparing a pancake, he or she will

check the boxes of the ingredients that are being used and the box of each step once it

is complete. An example of what these checklists could look like is presented in Figure

4.5. The checklist on the left refers to the set of instructions on how serve pancakes in

the café. An employee has checked the box relative to the first step, thus indicating that

a pancake order has been received. In order to prepare the pancake, the employee has
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Checklist for: 

Serve a Pancake in a Cafe:

1. Receive a pancake order.
2. Prepare a pancake.
3. Calculate the cost.
4. Get payment from the client.

Checklist for: 

Make a Pancake

● Flour
● Eggs 
● Milk 

● Pancake Mix

● Prepare the mix.
● Pour the mix in a hot pan. 
● Cook until golden. 

Figure 4.5: A possible visualisation of checklists for the sets of instructions in figures

4.3 and 4.4.

then started to follow the checklist on the right. The relation between the two check-

lists is indicated by the arrow from the second step of the checklist on the left to the

checklist on the right. In this last checklist, the boxes related to the ingredients eggs,

milk and flour have been checked, meaning that those ingredients have been selected

instead of the pre-made pancake mix. The first step of the instructions, “Prepare the

mix”, has been checked off. This represents the fact that the employee has already

performed that step. To continue following the instructions, the employee can now

perform the second step. The third step, namely “Cook until golden”, is greyed out

to indicate that it cannot be checked off yet. This is a result of the constraint that the

second step needs to be completed before the third one.

The manager hopes that these checklists will help the employees follow the instruc-

tions thoroughly. Moreover, by logging the data from these checklists, the manager

will be able to collect information on which ingredients are being used; which proce-

dures are being followed; and how long each step usually takes. In the next section I

will present the axioms of the PROHOW model, and explain how they can be used to

model these sets of instructions and their execution using a checklist.

4.7.2 Axioms of the Model

In this model I will use the terms entities and things interchangeably and according

to the OWL interpretation13 of a thing, namely as the most generic concept. In other

words, everything can be said to be a thing. An interpretation of the FOL variables

13https://www.w3.org/2002/07/owl#Thing (accessed on 17/10/2017)
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How to Serve a Pancake in a Cafe:

Steps:
1. Receive a pancake order.
2. Prepare a pancake.
3. Calculate the cost.
4. Get payment from the client.

:t0 How to Make a Pancake:

Requirements:
● You can use these ingredients:

○ Flour
○ Eggs
○ Milk

● Or you can use a premade mix:
○ Pancake Mix

Steps:
1. Prepare the mix.
2. Pour the mix in a hot pan.
3. Cook until golden.

:t1

:r4

:t2

:s0

:r1
:r2
:r3

:s1
:s2
:s3

:t3
:t4

Figure 4.6: A schematic representation of the sets of instructions displayed in figures

4.4 and 4.4 with additional URI identifiers attached to the main entities which they are

made of.

used in this model is a mapping between each variable and an entity. A named set of

entities is a class. In the context of an ontology, a class can also be called a concept.

Entities that are included in such a set are said to belong to that class, or of being of

that type. In this FOL model, I will define class membership using unary predicates.

Concrete examples of entities are presented in Figure 4.6. This figure contains

a schematised representation of the sets of instructions displayed in figures 4.4 and

4.4, with the addition of URI identifiers for a number of entities contained in these

instructions. To enhance readability, I name the URIs of my examples using the empty

prefix “:” as a shorthand for a full namespace, such as the one defined in Table 2.1.

For example, the URI :t0 refers to the set of instructions on “How to Server a Pancake

in a Café”; URI :s1 refers to the step “Prepare the mix”; and URI :r1 refers to the

requirement “Flour”.

With respect to a checklists, other examples of entities can be observed in Figure

4.7. The two checklists are identified, respectively, by URIs :e0 and :e1. Each check-

box is also identified with a URI. For example, URI :u5 refers to the check-box for the

step “Prepare the mix” contained in checklist :e1.

The type of entities central to this model is the class of tasks. The fact that entity

x is a task is defined by the predicate taskpxq (Definition 4.7.2). In PROHOW the inter-

pretation of a task is quite generic and, as described in Definition 4.7.1, it is made of all

the things that can be checked off from a to-do list. For example, the ingredient “Flour”

(entity :r1) and the step “Prepare the mix” (entity :s1) from our working example are
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Checklist for: 

Serve a Pancake in a Cafe:

1. Receive a pancake order.
2. Prepare a pancake.
3. Calculate the cost.
4. Get payment from the client.

Checklist for: 

Make a Pancake

● Flour
● Eggs 
● Milk 

● Pancake Mix

● Prepare the mix.
● Pour the mix in a hot pan. 
● Cook until golden. 

:u0
:u1
:u2
:u3

:u4

:u5
:u6
:u7

:e1:e0

:i0

:i1
:i2
:i3
:i4

Figure 4.7: A representation of the checklists of Figure 4.5 with additional URI identifiers

attached to the main entities which they are made of.

tasks. These facts are represented by the statements taskp:r1q and taskp:s1q. Tasks

can be seen as things that can be acted upon. Acting upon a task might involve per-

forming a specific action, such as in the case of the step “Prepare the mix”. Acting

upon a task might also involve retrieving or verifying the availability of something.

For example, an employee of the café might look for the ingredient “flour”, or verify

that it is already available in the kitchen, before checking its box in the to-do list.

Definition 4.7.1. Task A task is something that can be acted upon to be checked off a

to-do list.

Definition 4.7.2. taskpxq x is an entity of type Task.

Another core concept of this model is the checklist where instructions are executed.

Checklists can be seen as providing a context, or environment, to the execution of in-

structions. For example, we can imagine two different customers ordering pancakes

at the café, which are then prepared by two different employees. If one employee fin-

ishes preparing a pancake before the other, the set of instructions on “How to Make a

Pancake” might be complete in one checklist, but it might still be a work in progress

in the other. In the PROHOW model, checklists correspond to the concept of environ-

ment (Definition 4.7.3). The predicate environmentpeq represents the fact that an entity

e is an environment (Definition 4.7.4). In Figure 4.7 two examples of environments

are provided, namely :e0 and :e1. This is represented by the statements environ-

mentp:e0q and environmentp:e1q.

Definition 4.7.3. Environment An environment represents a specific intention to achieve

a certain goal task. An environment corresponds to a to-do checklist.
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Definition 4.7.4. environmentpeq Entity e is an Environment.

The task that an en environment was created to accomplish is its goal. The pred-

icate has goalpe,xq (Definition 4.7.5) is used to indicate that the main task (or goal)

of environment e is task x. For example, after a pancake order is placed, an employee

might start a new checklist to “prepare a pancake”. In this case, the task “prepare a

pancake” can be said to be the goal of that checklist. In the example checklists pro-

vided in Figure 4.7, for example, the goal of checklist :e0 is accomplishing the task

:t0: “Serve a Pancake in a Café” (has goalp:e0,:t0q).

The goal of checklist :e1, instead, is more complex to determine. In our example,

checklist :e1 is not independent from checklist :e0. More specifically, the employees

of the café follow the set of instructions on “How to Make a Pancake” (:s0) in order

to complete the step “Prepare a pancake” (:t2) of the other set of instructions. In this

case, checklist :e1 is considered as a nested checklist of checklist :e0. In order to

capture the reason why the nested checklist is being followed, the goal of checklist

:e1 is set as :t2 (has goalp:e1,:t2q).

Definition 4.7.5. has goalpe,xq The goal of Environment e is achieving task x.

Each environment has exactly one goal. In other words, each checklist is meant to

achieve something. This statement is represented as a consequence of axioms 1 and 2.

Axiom 1. Each environment has a goal.

environmentpeq Ñ Dx.has goalpe,xq

Axiom 2. Each environment has at most one goal.

 De,x,y.x‰ y^has goalpe,xq^has goalpe,yq

The two environments in our example are related to each other. More specifically,

:e1 is a sub-environment of :e0 because its purpose is to help accomplishing a task in

:e0, namely :t2. We can denote the fact than an environment e is a sub-environment of

another environment a, and consequently that a is a super-environment of environment

e, with the predicate sub envpe,aq (Definition 4.7.6). There is no restriction on the

number of sub-environments that an environment can have.

Definition 4.7.6. sub envpe,aq Environment e is a sub-environment of environment a.

The purpose of environment e is to accomplish a task in environment a.



Chapter 4. Know-How Representation 67

If we interpret the sub env predicate as a relation between environments, such re-

lation is not meant to be circular. In other words, by following a chain of sub env

relations, it should not be possible to visit the same environment more than once. Ax-

iom 3 prohibits such circular relationships making use of the helper predicate descen-

dent env, which corresponds to the transitive version of the sub env relation.

Axiom 3. The sub-environment relation cannot be circular.

descendent envpe,aq ðù sub envpe,aq

descendent envpe,aq ðù sub envpo,aq^descendent envpe,oq

 De.descendent envpe,eq

Environments that are connected with the sub-environment relation are said to be

related environments. Predicate relatedpe,aq states that environments e and a are re-

lated (Definition 4.7.7). This predicate is defined logically by Axiom 4. In our exam-

ple, environments :e0 and :e1 are related (relatedp:e0,:e1q and relatedp:e1,:e0q).

Definition 4.7.7. relatedpe,aq Environment e belongs to the same network of intercon-

nected environments as environment a. The logical definition of this predicate is given

in Axiom 4.

Axiom 4. The logical definition of the related predicate.

relatedpe,aq ðñ e“ a_ sub envpe,aq_ sub envpa,eq_

Do.relatedpe,oq^ relatedpo,aq

In order to achieve the goal of an environment, a number of tasks need to be exe-

cuted. For example, in order to achieve the goal of preparing a pancake, an employee

might have to prepare the pancake mix. In a checklist, specific executions of tasks are

represented as check-boxes. In the PROHOW model check-boxes are represented with

the concept of an execution (Definition 4.7.8). The predicate executionpiq represents

the fact that an entity i is an execution (Definition 4.7.9). For example, the check-box

:u1 in Figure 4.7 is an execution (executionp:u1q).

Definition 4.7.8. Execution An execution represents a specific attempt to perform a

certain task. It corresponds to a check-box in a to-do checklist.

Definition 4.7.9. executionpiq Entity i is an Execution.

As each check-box belongs to a checklist, each execution belongs to an environ-

ment. Predicate has envpi,eq is used to represent the fact that an execution i belongs
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to a specific environment e (Definition 4.7.10). The task that an execution is meant to

achieve is represented by predicate has taskpi,xq (Definition 4.7.11). For example, the

check-box :u1 in Figure 4.7 belongs to the checklist :e1 (has envp:u1,:e1q) and it is

meant to achieve task :r1 (has taskp:u1,:r1q).

Definition 4.7.10. has envpi,eq Execution i belongs to environment e.

Definition 4.7.11. has taskpi,xq Execution i is an attempt to achieve task x.

In the PROHOW model, each execution belongs to exactly one environment, and it is

meant to achieve exactly one task. These two statements are represented, respectively,

as consequences of axioms 5 and 6 and axioms 7 and 8. It should be noted there is no

restrictions on how many executions a task can have.

Axiom 5. Each execution has an environment.

executionpiq Ñ De.has envpi,eq

Axiom 6. Each execution has at most one environment.

 Di,e,a.e‰ a^has envpi,eq^has envpi,aq

Axiom 7. Each execution has a task.

executionpiq Ñ Dx.has taskpi,xq

Axiom 8. Each execution has at most one task.

 Di,x,y.x‰ y^has taskpi,xq^has taskpi,yq

It is important to notice that the three classes of entities defined in this model,

namely Task, Environment and Execution, are not overlapping. Axiom 9 defines these

three classes as disjoint.

Axiom 9. The classes Task, Environment and Execution are disjoint.

taskpxq Ñ  executionpxq^ environmentpxq

environmentpeq Ñ  executionpeq^ taskpeq

executionpiq Ñ  taskpiq^ environmentpiq

When the execution of a task is successfully accomplished, the corresponding

check-box is checked off from the to-do list. In this model, the predicate successpiq

denotes that execution i has been accomplished (Definition 4.7.12). For example, the

check-box :u1 in Figure 4.7 has been checked to indicate that it has been accomplished

successfully (successp:u1q).
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Definition 4.7.12. successpiq Execution i is has been successfully accomplished.

A task x can be considered complete in a checklist when its relevant check-box

has been checked off. Intuitively, the completion of a task means that a satisfactory

result has been reached, and there is no need for completing the same task in the

same environment again. The predicate completepx,eq is used to indicate that task

x is complete in environment e. This predicate is defined in Definition 4.7.13. For

example, the statement completep:r1,:e1q indicates that the requirement “Flour” has

been obtained in check-list :e1. Axiom 10 specifies one way to infer the completion

of a task, namely that if an execution i of a task x in an environment e has succeeded,

then the task x is complete in that environment.

Definition 4.7.13. completepx,eq Task x has been successfully completed in environ-

ment e. The logical definition of this predicate is given in Axiom 21.

Axiom 10. Definition of how a task can be considered complete by the successfull

accomplishment of an execution.

completepx,eq ðù Di.has envpi,eq^has taskpi,xq^ successpiq

In a checklist, executions can only be considered as complete or not. It should

be noted that this simple model can be easily extended to have other outcomes of an

execution i, such as failure, which could be identified, for example, with predicate

failurepiq, disjoint from predicate successpiq. A failure could be seen as the inability of

completing an execution of a task, and therefore suggesting the need to re-instantiate

another execution, or trying a different approach which does not involve the failed task.

An environment is said to be finished when its goal is complete. In our example we

can observe that, once the pancake has been prepared, there is no reason to continue

working on checklist :e1. This predicate is defined in Definition 4.7.14 and Axiom

11. In our example, we can observe that if the task :s0 of completing a pancake is

complete in environment :e1(completep:s0,:e1q), then that environment is finished

(finishedp:e1q).

Definition 4.7.14. finishedpeq The goal of environment e is complete in that environ-

ment. The logical definition of this predicate is given in Axiom 11.

Axiom 11. Logical definition of the predicate finished.

finishedpeq ðñ Dx.has goalpe,xq^ completepx,eq
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One of the most prominent feature of step-by-step instructions are the steps. Steps

can be seen as a way to simplify a complex task into a set of simpler ones. The

relation between a task x and one of its steps y is denoted by the predicate has steppx,yq

(Definition 4.7.15). In our example, the statement has stepp:s0,:s1q indicates that

:s1, namely “Prepare the mix” is a step of the task :s0, namely “Make a Pancake”.

Axiom 12 specifies that if a task x has at least one step, and all of its steps are complete

in an environment e, then task x is also complete in that environment. Intuitively,

this means that a task can be accomplished by accomplishing all of its steps. In our

example, task :s0 can be inferred complete in environment :e1 if the three steps :s1,

:s2 and :s3 are complete in that environment. Task :r4, on the other hand, does not

have steps, and therefore cannot be inferred complete using Axiom 12.

Definition 4.7.15. has steppx,yq Task y is a step of task x. Completing all the steps of

a task is equivalent to completing the task itself.

Axiom 12. Definition of how a task can be completed by completing its steps.

completepx,eq ðù pDy.has steppx,yqq^p@z.has steppx,zq Ñ completepz,eqq

Certain tasks can be completed in multiple ways by following different methods.

It is important to notice that in the PROHOW model, whenever a method is followed,

a sub-environment needs to be created. This requirement is a consequence of the fact

that each task can only be completed in each environment once. In order to allow the

same method to be used more than once, each method needs to be executed in its own

environment.

The relation between a task x and one its methods y is expressed by the predicate

has methodpx,yq (Definition 4.7.16). This predicate denotes the fact that completing

task y is a possible method for completing task x. If a method y of a task x is complete

in environment e with goal x, then task y is also complete in environment e (Axiom

13). Intuitively, this means that a task can be completed by completing any of its

methods. In our example, if task :s0 is complete in environment :e1, then we can

infer that task :t2 is also complete in that environment, since task :t2 is the goal of

that environment.

Definition 4.7.16. has methodpx,yq Task y is a method of task x. Completing a method

of a task is equivalent to completing the task itself.
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Axiom 13. Definition of how a task can be completed by completing one of its meth-

ods.

completepx,eq ðù Dy.has goalpe,xq^has methodpx,yq^ completepy,eq

When working with a number of related checklists it is important to determine

which ones should be followed at any given time. In our example, steps :t1 and :t2

are ordered. This means that step :t2, “Prepare a pancake”, should be performed

after step :t1, “Receive a pancake order”. Therefore, an employee should not start

following the instructions on how to prepare a pancake before a pancake order has been

placed. In other words, the check-boxes in environment :e1 should not be checked

until check-box :l1 has been checked. The logic behind this observation is captured

by the the concept of an active environment. The fact that an environment e is active

is denoted by predicate activepeq (Definition 4.7.17). If an environment is not active,

then no action should be taken to complete the executions of that environment.

Definition 4.7.17. activepeq Tasks in environment e can be considered for execution.

In the simplest case, an environment that does not have super environments can

be considered active. This notion is captured by Axiom 14. Using this axiom, the

environment :e0 in our example can be inferred to be active.

Axiom 14. An environment without super-environments is active.

activepeq ðù Da.sub envpe,aq

More complex reasoning is required to determine that environment :e1 is also

active. In fact, we can observe that environment :e1 is active because (1) its goal is

the completion of task :t2, namely “Prepare a pancake”, in environment :e0 and (2)

this task (:t2) is ready to be executed in environment :e0. An task x is ready in an

environment e if and only if it can be executed in that environment. This information is

captured by the predicate readypx,eq (Definition 4.7.18). We can observe that task :t2

should be considered ready in environment :e0 (readyp:t2,:e0q) because task :t1 is

complete in that environment. If task :t1 was not complete, then task :t0 would not

be ready.

Definition 4.7.18. readypx,eq Actions to accomplish task x can be performed in envi-

ronment e. The logical definition of this predicate is given in Axiom 15.
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Before providing a logical definition of the predicate readypx,eq, we need to pro-

vide a notion of dependency between tasks. In fact, we can say that task :t2 depends

on, or requires, step :t1. A task x can be said to require, or be dependent on, another

task y if the non-completion of task y can violate the dependency criteria of task x.

If the dependency criteria of a task are violated, then that task cannot be considered

ready. This notion of dependency between tasks is not only used to define the ordering

between steps, but it can also be used to represent other types of requirements, such as

the ingredients of a recipe.

For example, the pancake recipe in our discussion requires a number of ingredients.

From this we can infer that without the required ingredients the process of making a

pancake is not ready to start. In PROHOW, the dependency criteria of a task depend on

the predicates requirespy,xq (Definition 4.7.19), which defines cumulative dependency,

and requires onepy,xq (Definition 4.7.20), which defines sufficient dependency. The

dependency criteria of a task x are met in an environment e only if one of the following

conditions is met:

1. Task x does not depend on any other task.

 Dy.requires onepx,yq_ requirespx,yqq

2. Task x has at least one cumulative dependency and all of the cumulative depen-

dencies of x are complete in that environment.

Dy.requirespx,yq^@z.requirespx,zq Ñ completepz,eq

3. One of the sufficient dependencies of x is complete in that environment.

Dy.requires onepx,yq^ completepy,eq

Definition 4.7.19. requirespx,yq Task x has a cumulative dependency on task x. This

means that the completion of task y and all the other tasks z such that requirespx,zq is

sufficient to meet the dependency criteria of x.

Definition 4.7.20. requires onepx,yq Task x has a sufficient dependency on task y. This

means that the completion of task y is sufficient to meet the dependency criteria of x.

In our example, we can notice that task task :t0 does not have any requirements. Its

dependency criteria can therefore be considered to be met. Task :s0, on the other hand,
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depends on a number of ingredients. We can say that task :s0 has a cumulative de-

pendency on tasks :r1, :r2 and :r3 by stating requiresp:s0,:r1q, requiresp:s0,:r2q

and requiresp:s0,:r3q. This captures the fact that no single one of these three ingre-

dients is sufficient on its own, but that all three need to be available before the pancake

preparation process can be ready to start. We can also say that task :s0 has a suffi-

cient dependency on task :r4 by stating requires onep:s0,:r4q. This captures the fact

that the ingredient “Pancake Mix” is sufficient, on its own, to start making pancakes.

In other words, the process of making a pancake can be performed if all of the three

ingredients: flour, eggs and milk are present, or if the pancake mix ingredient is avail-

able. In a similar fashion, the ordering between the steps :t2 and :t1 can be expressed

by statement requiresp:t2,:t1q, meaning that step :t1 must precede step :t2.

Based on this notion of dependency, Axiom 15 provides the logical definition of the

notion of a ready task. More specifically, in order for a task x to be considered ready to

be executed in an environment e, three conditions must hold: (1) its dependency criteria

must be satisfied, (2) the environment e must be active and (3) x must not be a step of

any other task, or it must be a step of task that is ready in the same environment. This

last condition is necessary to make sure that the steps of a task are not executed before

that task is ready. For example, the ingredients of the pancake recipe can be defined

as requirements of the task :s0. Without the third condition step :s1, which does not

have any direct dependencies, could be considered ready even before the ingredients

are available.

Axiom 15. Logical definition of the predicate readypx,eq

readypx,eq ðñ activepeq^

pp Dy.has steppy,xqq_pDy.has steppy,xq^ readypy,eqqq^

pp Dy.requires onepx,yq_ requirespx,yqq_

pDz.requirespx,zq^@y.requirespx,yq Ñ completepy,eqq_

pDy.requires onepx,yq^ completepy,eqqq

Having defined the predicate readypx,eq, we can define when sub-environments

can be considered active. Axiom 16 extends Axiom 14 into a sufficient and necessary

definition of the predicate activepeq. This axiom states that an environment is active

if it does not have a super-environment, or if its goal task is ready in one of its active

super-environments. In our example, the goal of environment :e1, namely :t2, is

ready in its super-environment :e0, which is active. This fact allows us to conclude

that environment :e1 is also active.
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Axiom 16. Logical definition of the predicate activepeq

activepeq ðñ p Da.sub envpe,aqq_

pDa.sub envpe,aq^has goalpe,xq^ readypx,aq^ activepaqq

The definition of ready also allows us to define how a task can be considered

complete in an environment if it has been successfully completed in one of its sub-

environments. As we have already seen, Axiom 13 can be used to infer that task :t2

is complete in environment :e1 once the pancake recipe represented by task :s0 is

complete in that environment. However, we now need a way to infer that task :t2

should also be considered complete in the super-environment :e0. Axiom 17 states

that if a task x is ready in environment e, and complete in an environment a that is a

sub-environment of e and that has goal x, then x can also be considered complete in

environment e. In our example, if we assume that task :t2 is complete in environment

:e1, then Axiom 17 allows us to infer that task :t2 is also complete in environment

:e0. This inference is possible because task :t2 is the goal of environment :e1 and

because it is ready in environment :e0.

Axiom 17. Definition of how a task can be considered complete if it is complete in

one of its sub-environments.

completepx,eq ðù Da.readypx,eq^ completepx,aq^ sub envpa,eq^has goalpa,xq

In some instructions, it might be necessary to determine the real-world value of

certain objects. For example, step :t3 asks the employee to calculate the cost of the

pancake that the client should pay. The cost could vary depending on the time of the

day or on discount vouchers possessed by the client. In this situation it is not only

useful to keep track of whether task :t3 has been completed or not, but also to know

the resulting value of this operation. It is possible to attach a resulting value v to

an execution i using the has valuepi,vq predicate (Definition 4.7.21). The resulting

value v of a task x completed in an environment e is denoted by predicate valuepv,x,eq

(Definition 4.7.22). Axiom 18 specifies that if a successful execution i of a task x

is complete in an environment e and has value v, then v is the value of task x in that

environment. In our example, the employee of the café might determine that the current

price for a pancake is £3. He or she might then check off check-box :i3 (successp:i3q)

and annotate “£3” as the value of that execution (has valuep:i3,“£3”q). The term “£3”

is used here to refer to an entity representing the price of 3 pounds. Using Axiom

18, we can now infer that the value of the task :t3 in environment :e0 is 3 pounds

(valuep“£3”,:t3,:e0q).
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Checklist for: 

Get a Cash Payment

● Payment amount.
● Get the payment in cash.
● Give the change, if any.
● Give the receipt.

:j0
:j1
:j2
:j3
:j4

:e2How to Get a Cash Payment

Requirement:
● Payment amount.

Steps:
1. Get the payment in cash.
2. Give the change, if any.
3. Give the receipt.

:p0

:p1

:p2
:p3
:p4

Figure 4.8: A possible visualisation of a set of instructions on how to accept cash pay-

ments, and associated checklist. The entities in this visualisation have been annotated

with URI identifiers.

Definition 4.7.21. has valuepi,vq Execution i resulted in value v.

Definition 4.7.22. valuepv,x,eq Entity v is the resulting value of the completion of task

x in environment e.

Axiom 18. The value of a task in an environment can be inferred by the value of an

execution of that task in that environment.

valuepv,x,eq ðù Di.has envpi,eq

^has taskpi,xq^ successpiq^has valuepi,vq

To explain the remaining features of the PROHOW model, let us imagine that the

manager of the café from our example decides to add an additional set of instructions

on how to accept cash payments. A representation of this set of instructions and a

corresponding checklist are presented in Figure 4.8. The set of instructions on how to

get a cash payment are one method to complete the step “Get payment from the client”

(has methodp:t4,:p0q). Environment :e2 will now be considered a sub-environment

of environment :e0 (sub envp:e2,:e0q) with goal :t2 (has goalp:e2,:t4q).

The set of instructions for task :p0 require knowledge of the amount of money that

the client should pay (task :p1). This amount is the same as the amount of money that

an employee would have already calculated when completing task :t3. It is therefore

useful to reuse this knowledge, to avoid calculating the same amount of money twice.

In this case, it is said that task :p1 binds with task :t3. This fact, captured by the pred-

icate bindspx,yq, states that the execution of y should also count as the execution of x in

related environments (Definition 4.7.23). The concept of bindings is needed because

tasks which are complete in one environment cannot, by default, be considered com-

plete in related environments. Axiom 19 defines how bindings can be used to infer the

completion and value of tasks. If task x binds to task y (bindspx,yq) then task x can be
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considered complete in every environment e such that x is ready in e and y is complete

in an environment a related to e. For example, we can imagine an employee of the

café calculating the price for a pancake in environment :e0 (valuep“£3”,:t3,:e0q).

By binding task :p1 and task :t3 (bindsp:p1,:t3q) we can now use Axiom 19 to infer

the value of task :p1 in environment :e2 (valuep“£3”,:p1,:e2q).

Definition 4.7.23. bindspx,yq Task x can be considered complete in an environment if

task y is complete in a related environment. The value of y, if present, is also the value

of x.

Axiom 19. Definition of how bindings can be used to infer the completion and the

value of a task.

completepx,eq ðù Dy,a.readypx,eq^bindspx,yq^ completepy,aq^ relatedpa,eq

valuepz,x,eq ðù Dy,a.readypx,eq^bindspx,yq^valuepz,y,aq^ relatedpa,eq

If known a priori, certain values can be predefined using constants. Predicate

has constantpx,yq states that task x is associated with a task y which has also y as

the value (Definition 4.7.24). In this case, y acts both as a task and, more generally,

as a value. For example, the manager of the café might decide that pancakes should

always cost the same amount, for example 4 pounds. This constant can be attached to

the task :t0 of serving a pancake using statement has constantp:t0,“£3”q. Bindings

can then be used to specify that this constant value should be used in place of task

:t3, namely “Calculate the cost” (bindsp:t3,“£3”q). Once these two statements are

asserted, task :t3 can be inferred to be complete as soon as it becomes ready, and its

value can be inferred to be “£3”. If tasks :p1 and :t3 are bound (bindsp:p1,:t3q),

this value can also be inferred as the value that corresponds to the payment amount

(task :p1) of the set of instructions on how to make a client pay by cash (task :p0).

Definition 4.7.24. has constantpx,yqWhenever task x is the task of an execution in an

environment, task y can also be considered accomplished in that environment and as

having value y.

Axiom 20. Definition of how the completion of a task and its value can be inferred

using constants.

completepx,eq^valuepx,x,eq ðù Di,y.has envpi,eq

^has taskpi,yq^has constantpy,xq
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The previous Axioms are combined into sufficient and necessary definitions for

the complete and value predicates, the only two derived predicates that have not been

completely defined yet. Axiom 21 provides a sufficient and necessary definition for

the predicate complete by combining Axioms 10, 12, 13, 17, 19 and 20.

Axiom 21. Sufficient and necessary definition of the complete predicate.

completepy,eq ðñ pDi.has envpi,eq^has taskpi,yq^ successpiqq_

ppDx.has steppy,xqq^p@x.has steppy,xq Ñ completepx,eqqq_

pDx.has goalpe,yq^has methodpy,xq^ completepx,eqq_

pDa.readypy,eq^ completepy,aq^ sub envpa,eq^has goalpa,yqq_

pDx,a.readypy,eq^bindspy,xq^ completepx,aq^ relatedpa,eqq_

pDi,x.has envpi,eq^ has taskpi,xq^has constantpx,yqq

Axiom 22 provides a sufficient and necessary condition for the predicate value by

combining Axioms 18, 19 and 20.

Axiom 22. Sufficient and necessary definition of the value predicate.

valuepz,y,eq ðñ

pDi.has envpi,eq^ has taskpi,yq^ successpiq^has valuepi,zqq_

pDx,a.readypy,eq^bindspy,xq^valuepz,x,aq^ relatedpa,eqq_

pDi,x.has envpi,eq^ has taskpi,xq^has constantpx,yq^ z“ yq

The predicates of this model can be used to infer the types of their variables as

illustrated in Figure 4.2. These typing inferences are formalised by Axiom 23.

Axiom 23. Definition of the types associated with the predicates of the model.

has steppx,yq Ñ taskpxq^ taskpyq

has methodpx,yq Ñ taskpxq^ taskpyq

requirespx,yq Ñ taskpxq^ taskpyq

requires onepx,yq Ñ taskpxq^ taskpyq

has taskpi,xq Ñ executionpiq^ taskpxq

has envpi,eq Ñ executionpiq^ environmentpeq

has goalpe,xq Ñ environmentpeq^ taskpxq

successpiq Ñ executionpiq

sub envpe,aq Ñ environmentpeq^ environmentpaq
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has valuepe,vq Ñ executionpxq

has constantpx,yq Ñ taskpxq^ taskpyq

bindspx,yq Ñ taskpxq^ taskpyq

finishedpeq Ñ environmentpeq

activepeq Ñ environmentpeq

completepx,eq Ñ taskpxq^ environmentpeq

readypx,eq Ñ taskpxq^ environmentpeq

relatedpe,aq Ñ environmentpeq^ environmentpaq

valuepv,x,eq Ñ taskpxq^ environmentpeq

Conceptually, the predicates of the PROHOW model could be divided in two groups,

namely static and dynamic PROHOW predicates. The former are used to represent sets

of instructions, while the latter are used to represent their executions. Static predi-

cates, which only describe Task entities, are: task(x), has step(x,y), has method(x,y),

requires(x,y), requires one(x,y), has constant(x,y) and binds(x,y). These predicates

alone are sufficient to represent sets of instructions. These predicates are called “static”

because a knowledge base containing representations of instructions does not need to

be updated frequently. However, changes to these static predicates are possible. For

example, the creation of a new set of instructions, or the modification of an existing

set of instructions would result in the addition or deletion of facts based on those static

predicates.

All the predicates of the PROHOW model that are not static are dynamic. Dynamic

predicates are used to represent the execution of a set of instructions by describing

Execution and Environment entities. These predicates are called “dynamic” because a

representation of the execution of a set of instructions needs to be constantly updated.

In fact, whenever this execution progresses, new facts described using these dynamic

predicates should be asserted.

The FOL axioms defined in this section lay the semantic foundation of the PROHOW

knowledge representation for the rest of this thesis. The main use of these axioms is to

provide a formal definition to the terms of the PROHOW model. In many lightweight

vocabularies, such as Schema.org, terms are mostly defined by natural language de-

scriptions. Such definitions are easy for humans to interpret, but they are prone to

misinterpretation, and they do not allow machines to reason about them automatically.

The PROHOW model allows automated reasoning and its FOL axioms define the in-
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ference rules that machines can perform. When a set of instructions or a checklist

described using the PROHOW model is processed by a machine, these rules can be used

to infer new facts.

In particular, the logical definitions of the PROHOW model will be used to answer

the competency questions introduced in Section 4.4. The computational solution to

answer these competency questions, which will be presented in Section 4.10, is based

on the FOL definitions of the PROHOW terms. For example, Axiom 15 will be used

to determine whether a task is ready. This inference will be used to determine which

tasks are ready to be executed in an environment to answer competency question Q5.

This computational solution can be used in concrete applications of the PROHOW

model. For example, it is used in the human-machine collaboration application that

will be presented in Section 7.3. This application uses the FOL definitions of the

PROHOW model to reason about concrete to-do checklists and infer, for example, that

a task has been completed if all of its steps are complete.

4.7.3 Rewriting of the Competency Questions

The competency questions that guide the development of this knowledge representa-

tion model have been previously described in natural language in Section 4.4. I will

now redefine these competency questions with respect to the terminology of the PRO-

HOW model. The competency questions related to the scenario of a user exploring a

set of instructions is the following:

Q1 What are the requirements of a task x? Find the set Rx
all of all the sets Rx such

that the completion of every task in Rx allows x to be ready for execution, while

no proper subset of Rx does. If a task does not have requirements, than Rx
all is

empty. The answer to this question, namely the set Rx
all , is a set of sets of tasks.

Q2 How can task x be decomposed into steps? Find the set Sx
all of all the sets Sx such

that the complete execution of every task in Sx is equivalent to the completion of

x, while no proper subset of Sx does. The answer to this question, namely the set

Sx
all , is a set of sets of tasks.

To explain these first two competency questions, we can imagine the set of instruc-

tions in Figure 4.9. This figure extends the set of instructions presented in Figure 4.6

with an additional method :m1, namely “Cook the pancake in an oven”, which can be

used to complete the main task :s0.
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Given this set of instructions, competency question Q1 with respect to task :s0 is

answered by set R:s0
all “ tt:r1,:r2,:r3u,t:r4uu. In other words, the requirements of

:s0 are either the set of ingredients :r1: “Flour”, :r2: “Eggs” and :r3: “Milk”, or

the ingredient :r4: “Pancake Mix” instead. Competency question Q2 with respect to

task :s0, is answered by set S:s0all “ tt:s1,:s2,:s3u,t:m1uu . The first and second set

of tasks in St
all represent, respectively, the list of steps, and the alternative method of

:s0. I will assume these steps need to be performed in the given order. For example,

task :s2 requires the completion of task :s1 (R:s2
all “ tt:s1uu.

How to Make a Pancake:

Requirements:
● You can use these ingredients:

○ Flour
○ Eggs
○ Milk

● Or you can use a premade mix:
○ Pancake Mix

Steps:
1. Prepare the mix.
2. Pour the mix in a hot pan.
3. Cook until golden.

Alternative method:
● Cook the pancake in an oven.

:r4

:s0

:r1
:r2
:r3

:s1
:s2
:s3

:m1

Figure 4.9: Extended version of the set of instructions presented in Figure 4.6.

The competency questions related to the scenario of a user accessing a to-do check-

list based on a set of instructions is the following:

Q3 Which tasks are in the checklist? Find the set T e of all the tasks that are scheduled

to be executed in a checklist e. The answer to this question, namely the set T e,

is a set of tasks.

Q4 Which tasks have been completed in the checklist? Find the set T e
compl of all the

tasks that are completed in a checklist e. The answer to this question, namely

the set T e
compl , is a set of tasks.

Q5 Which tasks are ready to be completed in the checklist? This question can be

derived from questions Q1, Q3 and Q4. Find the set T e
ready of all the tasks x in T e

such that (1) they do not have requirements: Rx
all “H or (2) there is at least one
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set Rx in its requirement sets Rx
all (computed using question Q1) such that Rx is

included in the set T e
compl of all the completed tasks (computed using question

Q4) in a given environment e. The answer to this question, namely the set T e
ready,

is a set of tasks.

Q6 Which tasks are being completed by following a separate checklist? Find the

set Ee of pairs ă x,a ą such that the complete execution of checklist a can be

considered as equivalent to the completion of task x in checklist e. The answer

to this question, namely the set Ee, is a set of pairs of tasks and environments.

Q7 Which tasks can be completed at the current time to advance the progress toward

the completion of the checklist? This question can be derived from questions Q4,

Q5, Q6. Find the set T e
next of incomplete tasks which are ready to be executed:

T e
next “ T e

readyzT
e

compl within an environment e. This question can also be recur-

sively extended to all the sub-environments a found in the pairs ă x,a ą of set

Ee from question Q6 if x P T e
next . The answer to this question, namely the set

T e
next , is a set of tasks.

Q8 How can a checklist e to complete task t be generated? Find a partially ordered

set of tasks C such that (1) the execution of these tasks in the given order does

not violate the dependencies of these tasks, (2) the completion of all these tasks

in environment e is equivalent to the completion of t in e and (3) no proper sub-

set of Czttu has properties (1) and (2). Possible answers to this question can be

represented as lists of sets of tasks, such that the tasks in a set can be completed

in any order, but only after all the tasks in all of the antecedent sets in the list

have been completed.

An example of a checklist :e3 generated from the set of instructions on how to

accomplish :s0 is shown in Figure 4.10. This checklist corresponds to the list of sets:

rt:r1,:r2,:r3u,t:s1u,t:s2u,t:s3us. This list dictates that tasks :r1, :r2 and :r3

can be completed in any order before completing task :s1. After :s1, task :s2 can

be completed, and after that :s3. When all of these tasks are complete, the main

task :s0 can also be considered complete. This list is a correct answer to question

Q8 as it represents a partially ordered set of tasks that fulfils the criteria defined by

this question. Other answers are also possible, such as the list: rt:r4u,t:m1us, which

corresponds to the actions of cooking a pancake in an oven using a pre-made pancake

mix.
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Checklist to Make a Pancake

1. Flour Eggs Milk

2. Prepare the mix.

3. Pour the mix in a hot pan.

4. Cook until golden.

:e3

Figure 4.10: Example of a partially completed checklist derived from the set of instruc-

tions in Figure 4.9.

With respect to the checklist in Figure 4.10, the answer to competency question Q3

is the set of tasks T :e3 “ t:r1,:r2,:r3,:s1,:s2,:s3u. The answer to question Q4

is the set of complete tasks T :e3
compl “ t:r1,:r2,:r3,:s1u. The answer to question Q5

is T :e3
ready “ t:r1,:r2,:r3,:s1,:s2u, as :s3 is the only task in the checklist that does

not have all of its requirements satisfied. If a separate checklist :e4, describing how to

complete task :s3 in more details, was being followed, then the answer to question Q6

would be: E:e3 “ tă :s3,:e4 ąu. The set of tasks that can be accomplished next to

progress the execution of the checklist :e3, which provides the answer to question Q7,

is the set t:s2u.

Competency question Q8 can be seen close to the notion of automated planning,

and in particular to HTN planning. Similarly to planning, question Q8 involves the

search for a sequence of simpler tasks to decompose a more complex task. The goal

of accomplishing the complex task can be seen as the goal of an Automated Planning

(AP) problem. Moreover, question Q8 requires the ordering of tasks in a way that does

not violate certain constraints. In AP, a goal might not be satisfiable, for example if

there is a deadlock in the requirements of a task, or multiple solutions might exist. A

user capable of performing any task can complete a checklist simply by completing

the tasks of the checklist one by one in the given order.

Given that questions Q5 and Q7 can be derived by the other questions, the set of

competency questions required by a knowledge representation formalism to model the

domain of human instructions is made of questions Q1, Q2, Q3, Q5, Q6 and Q8.
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4.7.4 Workflow Interpretation of the Model

The expressiveness of the PROHOW model goes beyond simple step sequences which

are common in step-by-step instructions. In fact, this model can express all the basic

control flow patterns defined by Van Der Aalst et al. (2003).

Sequence Pattern This pattern is defined as follows: “An activity in a workflow

process is enabled after the completion of another activity in the same process” (Van

Der Aalst et al. 2003). An example of this pattern is provided in Figure 4.11. The fact

that an activity x is enabled after the completion of another activity y can be expressed

by the following PROHOW statement:

requirespx,yq

xy
requires

Figure 4.11: Sequence workflow pattern example: task x is executed after task y.

Synchronization This pattern is defined as follows: “A point in the workflow pro-

cess where multiple parallel subprocesses/activities converge into one single thread of

control, thus synchronizing multiple thread.” (Van Der Aalst et al. 2003). An example

of this pattern is provided in Figure 4.12. The fact that multiple threads of execution of

which the set of their last activities in each thread is Y converge to a point in the work-

flow that immediately precedes a set of activities X can be expressed by the following

PROHOW statement:

@y P Y,x P X .requirespx,yq (4.1)

requires x

y1

y2

y3

requires

requ
ires

Figure 4.12: Synchronization workflow pattern example: task x can be executed after

the completion of all the tasks y1, y2 and y3, which can be executed in parallel.

Simple Merge This pattern is defined as follows: “A point in the work ow process

where two or more alternative branches come together without synchronization” (Van
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Der Aalst et al. 2003). An example of this pattern is provided in Figure 4.13. The fact

that a point in the workflow that immediately precedes a set of activities X represents a

non-synchronized merge of multiple threads of execution of which the set of their last

activities in each thread is Y can be expressed by the following PROHOW statement:

@y P Y,x P X .requires onepx,yq (4.2)

requires_one x

y1

y2

y3

requires_one

requ
ires

_on
e

Figure 4.13: Simple Merge workflow pattern example: task x can be executed after the

completion of any of the tasks y1, y2 and y3.

Parallel Split This pattern is defined as follows: “A point in the workflow process

where a single thread of control splits into multiple threads of control which can be

executed in parallel, thus allowing activities to be executed simultaneously or in any

order” (Van Der Aalst et al. 2003). A partial example of this pattern is provided in

Figure 4.14. The fact that a point in the workflow that immediately follows a set of

activities X splits into multiple threads of which the set of their initial activities in each

thread is Y can be expressed by the following PROHOW statement only if the threads

later converge using the Synchronization pattern.

@y P Y,x P X .requirespy,xq (4.3)

x requires
requ

ires

requires

y1

y2

y3

Figure 4.14: Partial example of the Parallel Split and Exclusive Choice workflow pat-

terns: tasks y1, y2 and y3 can be executed after task x.

Exclusive Choice This pattern is defined as follows: “A point in the workflow pro-

cess where, based on a decision or workflow control data, one of several branches is

chosen” (Van Der Aalst et al. 2003). This pattern is implemented in the same way as
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the Parallel Split pattern. In the workflow interpretation of PROHOW, in fact, whether

all of the branches need to be followed or not, is implicit in the way they converge.

If they converge using a Synchronization pattern, as depicted in Figure 4.16, then it

can be inferred that all of the branches need to be followed. If they converge using a

Simple Merge pattern instead, as depicted in Figure 4.15, then it can be inferred that

only one of the branches needs to be followed.

requires_onerequiresw

requ
ires

requires

y1

y2

y3

x

requires_one

requ
ires

_on
e

Figure 4.15: Exclusive Choice workflow pattern example: by using the Simple Merge

pattern, it is implicit that only one of tasks y1, y2 and y3 needs to be complted after task

w and before task x.

requiresrequiresw

requ
ires

requires

y1

y2

y3

x

requires

requ
ires

Figure 4.16: Parallel Split workflow pattern example: by using the Synchronisation pat-

tern, it is implicit that all of the tasks y1, y2 and y3 need to be completed after task w

and before task x.

4.7.5 Logical Properties of the Model

This logical model describes the state of the world in terms of a known set of facts W ,

consisting only of the base predicates of the model, which state which facts are true

in the state of the world. Facts which are not true in the state of the world are not

expressed directly.

Two important assumptions related to the availability of facts can be made: the

Open-World Assumption (OWA) and the Closed-World Assumption (CWA) (Minker

1982). The CWA implies complete knowledge of the world. In other words, if a state-

ment cannot be inferred true from the set of statements in W , then it can be assumed

to be false. Under the OWA, instead, the state of the world is considered to be only

partially observable. Therefore, if a statement x cannot be inferred from W , it is not
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considered false, but unknown instead, as it is possible that certain true but unknown

statements can prove x. Since perfect knowledge of the domain is hard to achieve,

many real world situations can be described as following the OWA.

The main problem of the OWA is the difficulty in proving that a certain statement

is false in the state of the world. An axiom without negation whose terms are bound

by the existential quantifier can be proven true in the OWA if it is expressed in W

or if it can be derived from it. On the other hand, the same axiom cannot be proven

true if its terms are bound by the universal quantifier. This is a result of the fact that

an axiom bound by an universal quantifier is only true if there is no counter-example,

namely a possible assignment of variables which does not satisfy the axiom. Under the

OWA, unless the axiom under the universal quantifier is a tautology or a contradiction,

it is always possible that a counter-example exists. For example, part of Axiom 15

verifies whether all of the requirements of a task are complete. Under the OWA it

is impossible to prove this part of Axiom 15, as it is always possible that there is an

unknown dependency to a task which is incomplete. In other words, under the OWA

it is not possible to prove that all of the requirements of a task have been completed or

that all of its steps have been completed.

While the OWA does not allow important inferences of the model to be made,

the CWA is impractical to assume in a real context. For this reason, I formulate a

third assumption that I call Semi-Open-World Assumption (SOWA). The SOWA is

an OWA with one added constraint. Under the SOWA, complete knowledge of the

state of the world W̄ is divided into a number of subsets, or resources, R, such that
Ť

rPR
r “ W̄ , and each task t is associated with a set of resources Dptq which contain

exhaustive information about task t. More specifically, each step has steppt,xq and

each requirement requirespt,xq of task t needs to be explicitly asserted in each resource

in Dptq. The axioms in 4.4 formalise this property using predicate containspa,bq to

state that statement b is explicitly asserted in resource a.

@t,d P Dptq.has steppt,xq ÝÑ containspd,has steppt,xqq

@t,d P Dptq.requirespt,xq ÝÑ containspd, requirespt,xqq
(4.4)

Under the SOWA, the inferences described in Axiom 12 and 15 can be made for a

task t as long as all the facts contained in one of the resources Dptq are known. If at

least one of the resources Dptq is included in the database, SOWA differs from OWA

in the sense that failure to prove has steppt,xq or requirespt,xq proves, respectively

 has steppt,xq and  requirespt,xq.
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While not as general as OWA, SOWA captures the common sense intuition that ex-

haustive information about the steps and the requirements of a particular task should be

contained in a single resource. For example, a typical web user interested in preparing

a pancake might open a web-page containing a recipe for making pancakes. Arguably,

such a user would follow the instructions assuming that all the requirements and steps

of the recipe are exhaustively listed on that page. This assumption is equivalent to

SOWA, and it allows the user to reliably make universally quantified inferences over

the task described in the web-page, without having to assume complete knowledge of

the world (CWA).

It is important to state that the concept of exhaustive is subjective to the information

needs of the recipient of such information. For example, a pancake recipe might not

specify that “a source of heat” is required to cook the pancake. Since this information

can be thought of as implicit from the point of view of human common-sense, its

omission from a set of instructions does not contradict the SOWA assumption.

4.7.5.1 Execution-Equivalent Instructions

If we are interested in achieving a given task, we might find multiple sets of instruc-

tions online that explain how to accomplish it. Some of them might describe different

approaches, or more specifically a different sequence of actions to accomplish the task.

In this case I define the sets of instructions as being semantically different. Other sets

of instructions might describe the same sequence of actions, but representing it in dif-

ferent ways. In this last case, I define these sets of instructions as being semantically

equivalent but structurally different.

These notions of equivalence are applicable to sets of instructions which contain

the same minimal set of execution tasks Mt . Mt is the set of tasks that are included in

all the the possible checklist traces Et to accomplish task t. Each checklist trace in Et

is an ordered list of tasks, such that accomplishing these tasks in the given order results

in accomplishing the main task t. Given T e as the set of tasks in the checklist trace e,

Mt is defined by Formula 4.5.

Mt
“

ď

ePEt

T e (4.5)

. If two sets of instructions contain a different minimal set of execution tasks, then

they can be said to be semantically different, as they require the completion of differ-

ent actions. It is important to notice that this definition of equivalence assumes that if

two tasks are the same, then they are represented by the same variable. Determining
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whether two tasks are the same is a separate problem, not considered in these defini-

tions.

I define two sets of instructions to accomplish a task t to be semantically equivalent

if and only if they result in the same set of checklists traces Et . Two sets of instructions

are said to be structurally equivalent if and only if they are defined by the same set of

axioms.

To illustrate these notions of equivalence, we can consider the three sets of instruc-

tions in Figure 4.17, which represent a simplified version of the set of instructions pre-

sented earlier in the chapter. In this example, task :t0 has only 2 steps. The minimal

set of execution tasks Mx and the set of all possible checklists Ex is also given in the

figure. All three sets of instructions contain the same minimal set of executions task:

t:t0,:t1,:t2u. These sets of instructions are not structurally equivalent, as they are

defined by a different set of axioms. For example, the axiom requiresp:t2,:t1q is

only included in Version 1, while the axiom requires onep:t2,:t1q is only included

in Version 2. Versions 1 and 2 are semantically equivalent, as they can be interpreted as

the same set of possible checklists Ex. Version 3, however, is not semantically equiva-

lent to the other versions. Lacking a dependency between tasks :t2 and :t1, Version

3 allows the completion of task :t2 before task :t1. This results in the checklist trace

r:t2,:t1s, which cannot be computed from the other two versions.

The notion of semantic equivalence can be used to determine whether two sets of

instructions are, in practice, interchangeable. Two semantically equivalent but struc-

turally different sets of instructions might behave differently when new knowledge is

added. For example, adding the same axiom requiresp:t2,:t3q to versions 1 and 2

would make them semantically different. In Version 1, task :t2 would then require

both tasks :t1 and :t3. In Version 2, however, only one of these two tasks would be

required.

4.8 Fifth Phase: a Concrete Vocabulary for Instructions

In the fifth and last phase of this method, I present a concrete vocabulary to represent

the PROHOW model defined in the previous phase. To do so, I reuse existing data

representation standards from the Semantic Web field that I reviewed in Section 2.1.

The PROHOW model has been expressed in First Order Logic (FOL) but it cannot

be completely translated into Description Logics (DL), a logic formalism commonly

used to describe ontologies (Baader et al. 2008), such as OWL (Bechhofer et al. 2004).
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Version 1

Ex = {[:t0],[:t1,:t2]}
Mx = {:t0,:t1,:t2}

Version 2

Ex = {[:t0],[:t1,:t2]}
Mx = {:t0,:t1,:t2}

Version 3
Ex = {[:t0],[:t1,:t2],

[:t2,:t1]}
Mx = {:t0,:t1,:t2}

:t1 :t2

:t0

:t1 :t2

:t0

:t1 :t2

:t0

Figure 4.17: Three different sets of instructions for the same task. Only Versions 1 and

2 are semantically equivalent, while none of them is structurally equivalent.

Some aspects of the PROHOW model can be described in DL. More specifically, it is

possible to model in OWL the list of classes and relations used in the PROHOW model,

along with information about the domain and range of the relations. As we will see

later, this will be done by adopting the RDFS vocabulary, which is used by the OWL

language.

Most of the PROHOW model, however, is expressed as logical axioms, such as

those that provide a necessary and sufficient definition for certain terms (e.g. Axiom

15). Many of these axioms cannot be translated into DL. DL was created as a less

expressive formalism than FOL in order to allow tractable reasoning, and therefore

only specific kinds of FOL expressions can be converted into DL. It has been shown

that the two variable fragment and the guarded fragment of FOL can be translated into

DL (Baader et al. 2008). However, the PROHOW model uses FOL axioms, such as
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Axiom 10, which are not compatible with the two variable fragment of FOL because

they contain more than two variables. Moreover, Axiom 10 does not belong to the

guarded fragment because the predicates within the scope of the existential quantifier

do not include all the free variables.

To create a lightweight instantiation of the PROHOW model, I choose to de-couple

it from its axioms and to represent it as an RDFS vocabulary, which I call the PROHOW

vocabulary. This RDFS vocabulary is a collection of URI terms that denote classes

and relations that can represent all the logical statements of the model defined in the

previous phase. The terms of this vocabulary are listed in Table 4.6, and follow the

namespaces described in Table 2.1. While different naming conventions exist, this

vocabulary follows the convention of only using lower case letters and of using un-

derscores as word delimiters (Montiel-Ponsoda et al. 2011). These terms can be used

to model all the 15 basic predicates of the PROHOW model listed in Table 4.4, and

therefore also to infer the remaining 6 derived predicates.

Concept Definition if α has this as its rdf:type

prohow:task task(α)

prohow:execution execution(α)

prohow:environment environment(α)

Relation Definition if subject α has this relation to object β

prohow:requires requirespα,βq

prohow:requires_one requires onepα,βq

prohow:has_step has steppα,βq

prohow:has_method has methodpα,βq

prohow:has_task has taskpα,βq

prohow:has_goal has goalpα,βq

prohow:binds_to bindspα,βq

prohow:has_constant has constantpα,βq

prohow:has_value has valuepα,βq

prohow:has_result successpαq if β is prohow:complete

prohow:has_environment has envpα,βq

prohow:sub_environment_of sub envpα,βq

Table 4.6: The concepts and relations of the PROHOW vocabulary.

A full specification of the PROHOW vocabulary is available in Appendix A as an

OWL file. This vocabulary has been validated with the OntOlogy Pitfall Scanner!

(OOPS!), developed by Poveda-Villalón et al. (2014). The OOPS! tool automatically
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validates an ontology against a number of common problems, or pitfalls, that were

identified by analysing a corpus of 693 ontologies. The OOPS! tool did not detect

any structural problem in the PROHOW vocabulary. However, it detected a failure in

retrieving the vocabulary file through content negotiation. This problem might be due

to a lack of support in URL redirection by the OOPS! tool, as the PROHOW vocabulary

can be correctly retrieved in both human and machine understandable format using

content negotiation. The curl14 commands given in listings 4.1 and 4.2 demonstrate

how it is possible to use the vocabulary URI to retrieve, respectively, a human and a

machine understandable representation.

Listing 4.1: curl command to retrieve a human readable representation of the PROHOW

vocabulary.

curl -L -H "Accept: text/html" http://w3id.org/prohow#

Listing 4.2: curl command to retrieve a machine readable representation of the PROHOW

vocabulary.

curl -L -H "Accept: application/rdf+xml" http://w3id.org/prohow#

The number of triples necessary to represent a set of instructions using the PROHOW

vocabulary has a low complexity, as this number scales linearly with the number of

steps (α), requirements (β) and methods (γ) that the set of instructions contains. I will

now provide an upper bound on the number of triples necessary to represent a set of

instructions t, assuming that all the entities are labelled, and assuming that each step

must be preceded by at most another step. This last condition is true for all linear

sequences of steps, such as those found in the wikiHow and Snapguide repositories,

because each step has at most one antecedent.

To represent a set of instructions t, one triple is required to define the label of t.

Each requirement is defined by two triples, (1) the first to link the URI of the require-

ment to its label, and (2) the second one to link it to the task that requires it. Each step

is defined by up to three triples. (1) the first to link the URI of the step to its label, (2)

the second to link the step to the higher-level task that the step is decomposing and (3)

the third, optional triple to link the step to another step that must precede it in the order

of execution. Each method is defined by two triples: (1) the first to link the URI of the

method to its label and (2) the second to link it to the higher-level task of which it is a

method. Therefore, the number of triples to represent the set of instructions t is at most

14https://curl.haxx.se/ (accessed on 17/10/2017)
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2β3α2γ`1, which corresponds to complexity Opβαγq. Assuming that any represen-

tation of t needs to have at least βαγ triples, and therefore complexity Opβαγq, to be

able to define a label for each entity, the complexity of the PROHOW representation can

be said to be minimal.

Having already described the meaning of each term in the previous section, what

will follow is a series of examples that demonstrate how RDF data following the PRO-

HOW vocabulary materialises in practice. The following text snippet describes the

pancake recipe of Figure 4.9, identified with the URI :s0 as a PROHOW task. Through-

out this thesis, RDF data will be presented in Turtle format using the RDF namespaces

defined in Table 2.1. Following the most common standards for publishing data on

the web, hierarchical relations, such as class membership, will be described using the

RDFS vocabulary, while the natural language description of entities will be provided

using the rdfs:label relation.

Listing 4.3: A pancake recipe defined as a PROHOW task.

:s0 rdf:type prohow:task .

:s0 rdfs:label "How to Make a Pancake".

The following example describes three steps of a pancake recipe, namely: (1)

preparing the pancake mix, (2) pouring the mix into a hot pan and (3) cooking un-

til the pancake is golden. Although all of these steps also belong to the PROHOW

class of tasks, this class membership can be omitted as all the core PROHOW relations

prohow:has_step, prohow:has_method and prohow:requires have RDFS domain

and range instances of class prohow:task. In other words, whenever one of these re-

lations is found in an RDF triple, both the subject and the object of such triple can be

assumed to belong to class prohow:task.

Listing 4.4: The PROHOW representation of the steps of a pancake recipe.

:s0 prohow:has_step :s1, :s2, :s3 .

:s1 rdfs:label "Prepare the mix" .

:s2 rdfs:label "Pour the mix in a hot pan" .

:s3 rdfs:label "Cook until golden" .

In this example, the three steps of the pancake recipe are ordered. This is achieved

by requiring step :s3 to execute after step :s2, which in turn should execute after step

:s1.

Listing 4.5: The PROHOW representation of the ordering of three steps.
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:s3 prohow:requires :s2 .

:s2 prohow:requires :s1 .

In this other example, the dependency relation is used to define three ingredients of the

recipe: (1) eggs, (2) milk and (3) flour, as its requirements.

Listing 4.6: The PROHOW representation of the requirements of the pancake recipe.

:s0 prohow:requires :r1, r2, r3 .

:r1 rdfs:label "Flour" .

:r2 rdfs:label "Eggs" .

:r3 rdfs:label "Milk" .

The following example defines the alternative method :m1 to cook a pancake.

Listing 4.7: The PROHOW representation of the alternative method of the pancake

recipe.

:s0 prohow:has_method :m1 .

:m1 rdf:label "Cook the pancake in an oven" .

The following example defines a new checklist :e5 to prepare a pancake.

Listing 4.8: The PROHOW representation of a checklist to complete task :s0

:e5 rdf:type prohow:environment .

:e5 prohow:has_goal :s0 .

Given the previous PROHOW descriptions of this task, it can be inferred that the

task :s0 is not ready to be executed in environment :e5, since it depends on tasks

which have not been accomplished. If they are accomplished, the following statements

can be added to the database:

Listing 4.9: The PROHOW representation of the requirements of the pancake recipe

accomplished in the environment.

:w1 prohow:has_environment :e5 .

:w1 prohow:has_task :r1 .

:w1 prohow:has_result prohow:complete .

:w2 prohow:has_environment :e5 .

:w2 prohow:has_task :r2 .

:w2 prohow:has_result prohow:complete .

:w3 prohow:has_environment :e5 .

:w3 prohow:has_task :r3 .
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:w3 prohow:has_result prohow:complete .

After these statements have been added, it will be possible to infer that the task :s0 is

ready to be executed in environment :e5.

4.9 Compatibility with Existing Languages Evaluation:

a Conversion to PDDL

The PROHOW model is inspired by previous work on formal process representations

and its concepts can be translated into other process formalisms. To demonstrate this

point, the PROHOW model has been translated into a PDDL domain definition. This

domain definition is listed in its entirety in Appendix B. The PDDL version of the

PROHOW model has been generated by translating the axioms of the model into PDDL

actions. PROHOW axioms are in the form αðù β, where α and β are first order logic

formula. Sequent calculus provides one way to reason with these formula to infer new

ones by proving them true. In the sequent calculus, α can be said to be the consequent

that can be inferred from β, the antecedent.

To translate the model into a PDDL domain definition each axiom α ðù β of the

model is translated into a PDDL action having the antecedent formula β as the PDDL

precondition and the consequent formula α as the PDDL effect. The name, parameters

and types of the action are defined accordingly, along with the types, requirements and

predicates of the domain. For example, the following PDDL action definition represents

Formula 11:

Listing 4.10: A PDDL action representing Formula 11.

(:action infer_finished

:parameters (?e - environment)

:precondition (exists (?g)

(and

(has_goal ?e ?g)

(complete ?g ?e)))

:effect (finished ?e))

The PDDL domain defined so far describes what can be inferred in the PROHOW

model. However, it does not describe how an agent can modify the state of the world,

adding new statements that could not have been inferred just by the model itself. An



Chapter 4. Know-How Representation 95

agent wanting to complete a checklist is allowed to do two actions. The first one is

accomplishing a task, and it is identified by action accomplish taskpt,e, iq. If t is a

task ready in environment e, and execution i is an execution variable not previously

assigned to any environment or task, then this action states that the execution variable

i is assigned to task t and environment e and that it has succeeded.

The second action that an agent can perform is to define a new environment e as a

sub-environment of a in which to complete task t through its method m. This action is

identified with the name istantiate sub envpe,a, t,mq. If m is a method of t, and e

is a new environment variable not associated with any goal or any super-environments

and different from a, then performing this action instantiates the environment e as a

sub-environment of a and with goal t.

These two actions are sufficient to allow a planner to generate a valid checklist (if

any exists) to achieve a certain goal. A valid checklist, is a partially ordered set of

tasks, such that (1) the execution of its tasks in a sequence which respects its partial

order does not violate the dependency constraints of its tasks and (2) the execution of

all or a subset of its tasks is enough to infer the completion of its goal.

For example, we consider can consider the PROHOW representation illustrated in

Figure 4.18. This diagram shows a task t which requires task r and which is decom-

posable into steps a and b, the second of which is decomposable by method x. We can

represent the task of planning a checklist for task t with the PDDL problem definition

listed in Listing B.2 in the Appendix. This problem definition defines the relations

between the tasks. To set the goal of the problem, an environment e is defined as hav-

ing goal t. The goal of the PDDL problem can now be stated as the goal of reaching

a state where environment e is finished. Since in PDDL the creation of new objects is

not allowed, a sufficient number of place-holder object variables should be reserved to

allow the planner to instantiate new executions and environments.

The PDDL domain and problem definitions are sufficient to run an automated plan-

ner to try to discover possible solutions to this problem. Solutions to this problem

detail the set of tasks that can be accomplished to accomplish a certain goal task, also

specifying their order, the environments they have to be executed in, and the relations

between such environments. For this reason, a solution to a PDDL problem generated

from a PROHOW description of a set of instructions can be considered as an answer to

the competency question Q8.

For the purpose of this evaluation, I have used the Fast-Downward planner15 using

15http://www.fast-downward.org/ (accessed on 17/10/2017)
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Figure 4.18: A simple model of instructions in the PROHOW model.

the “LAMA 2011 configuration”. The solution found for this problem is shown in

Listing B.3. This solution can be interpreted as follows: task r is accomplished in

environment e to make task t ready for execution, and then t is accomplished, thus

completing the goal of checklist e. In this planning configuration, task a, b and x are

redundant as t can be accomplished directly without resorting to decomposition.

In order to force the planner to decompose tasks, the primitive tasks extension can

be introduced. Under this extension, the action accomplish taskpt,e, iq has a new

precondition that makes it applicable only for tasks t defined as “primitive”. Intuitively,

primitive tasks are tasks which are simple enough so that an agent can perform them

without requiring further instructions. The problem description can now be extended

with the assertion that only tasks r, a and x are to be considered primitive. This new

configuration invalidates the previously found plan, as task t cannot be accomplished

directly.

The new plan generated by the planner for this new configuration is shown in

Listing B.4. This time, the planner decides to instantiate environment ee as a sub-

environment of e to accomplish task b through its method x. The planner then pro-

ceeds to accomplish r in environment e, x in sub-environment ee and a in environment

e. Having completed method x in sub-environment ee, the planner can now infer that

task b has been accomplished in the super-environment e. Now that both steps a and b

have been completed, the planner can infer that the task t has been completed and that

the goal has been reached. More examples of how to define and solve planning prob-

lems containing bindings and constants can be found in Section B.1 of the appendix.
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4.10 Domain Formalisation Evaluation

I now I validate the hypothesis that all the competency questions defined in Section

4.7.3 are answerable by the PROHOW model (Hypothesis 1). I do so by following

the methodology described in Section 3.1.1. This methodology involves the imple-

mentation and testing of a concrete computational approach to answer the competency

questions. Given that the expressiveness of the PROHOW model and the PROHOW vo-

cabulary are equivalent, this hypothesis can be validated by demonstrating that the

competency questions are answerable by data following the PROHOW vocabulary.

When using the PROHOW vocabulary, data is assumed to be stored in an RDF

database that can queried using SPARQL. The SPARQL queries that are used in this

evaluation are listed in Sections C.2 and C.3 in the Appendix. In some cases, ex-

ecuting one of these queries is enough to answer a competency question. For ex-

ample, the following SPARQL query, based on the query template in Listing C.12

in the Appendix, returns the URIs of all the tasks that are complete in environment

http://example.com/env, thus answering the competency question Q4.

PREFIX prohow: <http://w3id.org/prohow#>

SELECT ?task

WHERE {

?ex prohow:has_environment <http://example.com/env> .

?ex prohow:has_task ?task .

?ex prohow:has_result prohow:complete . }

When a single SPARQL query is not sufficient, complex functions are defined as algo-

rithms that combine the results of one or more SPARQL queries. These algorithms are

listed in Appendix D. The algorithms and queries that answer competency questions

Q1 to Q8, along with their typed parameters, are the following:

Q1 : get requirement setsptask xq returns a set of sets of tasks;

Q2 : get decomposition setsptask xq returns a set of sets of tasks;

Q3 : get tasks in envpenvironment eq returns a set of tasks;

Q4 : get completed tasks in envpenvironment eq returns a set of tasks;

Q5 : get ready tasks in envpenvironment eq returns a set of tasks;
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Q6 : get sub environments in envpenvironment eq returns a set of pairs of tasks

and environments;

Q7 : get next tasks to accomplishpenvironment eq returns a set of tasks;

Q8 : create checklistsptask xq returns a set of lists of sets of tasks.

To evaluate these algorithms, I have implemented them in Python and I have tested

them on a number of test cases. The test cases used for this evaluation are based

on two sets of instructions and on four checklists, which represent these instructions at

different stages of execution. These test cases have been designed to test all the axioms

of the PROHOW model. To do so, the test cases include, among others, the following

features:

• Tasks which do not have requirements.

• Tasks which have multiple necessary requirements (cumulative dependencies).

• Tasks which have multiple alternative requirements (sufficient dependencies).

• Tasks which have both necessary and alternative requirements (both necessary

and sufficient dependencies).

• Tasks which do not have steps nor methods.

• Tasks which can be decomposed by steps.

• Tasks which can be decomposed by methods.

• Tasks which can be decomposed both by methods and by steps.

Based on these test cases, two types of tests have been conducted. The first type

of test involves comparing the answers produced by the algorithms with a manually

created set of expected answers. This type of test was used to directly verify the output

of each algorithm.

The second type of test involves validating multiple competency questions at the

same time by simulating the execution of a set of instructions. This simulation is

performed as follows. Firstly, a checklist e to achieve a goal task x is generated using

the algorithm to answer question Q8. Then, the checklist e is materialised as a set of

RDF statements and added to the local knowledge base. Lastly, the tasks of checklist

e are selected, one at a time, to be executed. The order in which tasks are selected
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follows the ordering imposed by the checklist. After a task is selected, its successful

execution is simulated by adding a statement to the knowledge base that marks it as

complete in that environment.

The test is considered failed if one of two fail criteria occurs. The first fail criterion

occurs if the execution of a task is about to be simulated, but the task is not ready in

that environment yet. This criterion validates that the partial ordering imposed by the

checklist is consistent with the requirements of each task.

The second fail criterion occurs if the execution of all the tasks of the checklist have

been simulated, but the goal task x cannot yet be inferred to be complete. This criterion

validates that the successful completion of the checklist is sufficient to achieve its goal.

If no fail criteria occurs, then the test is considered passed.

The code and data for this experiment is available on GitHub16 and it uses the RD-

FLib17 library to read and modify RDF data from a Turtle file. In this implementation,

all the tests for each of the algorithms validate successfully, thus providing evidence in

favour of the correctness of Hypothesis 1.

4.11 Conclusion

In this chapter I have followed the NeOn method for ontology engineering to formalise

the domain of step-by-step instructions and their execution as to-do checklists. This

method resulted in PROHOW, a logical model of this domain, along with a concrete

implementation of this model in RDF. This formalisation is the solution to the know-

how representation problem that I will consider throughout the rest of this thesis.

Existing languages typically assume that processes are composed of atomic build-

ing blocks. For example, primitive activities represent the most fine-grained level of

task decomposition in HTN planning. In a similar way, individual web services, such

as the ones defined by OWL-S, can be seen as the atomic components of web service

composition workflows, which cannot be decomposed further into other services or

workflows. The PROHOW model, instead, is designed to model the open-ended do-

main of human instructions. In PROHOW, tasks do not need to be defined in exact

terms, and they can always be decomposed into more fine-grained tasks or alternative

methods.

This formalisation was driven by a number of competency questions, which cor-

16https://github.com/paolo7/prohow_algorithms (accessed on 17/10/2017)
17https://github.com/RDFLib (accessed on 17/10/2017)
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respond to the questions that this formalisation should be able to answer to support a

user in performing two key applications. The first one is discovering relevant know-

how when exploring sets of instructions. The second is obtaining information about

the current state of execution of a to-do checklist and discovering how to progress it to-

ward the completion of a certain goal. A computational solution to these competency

questions was provided by a number of algorithms and database queries, which has

been implemented and tested.

It should be noted that the core of the PROHOW model is a set of three disjoint

concepts: tasks, executions and environments. Unlike typical ontologies, PROHOW

does not arrange concepts and properties hierarchically into a taxonomy. For this rea-

son, PROHOW can be seen more like a collection of semantic terms, or a vocabulary,

than an ontology. The lack of a taxonomy is an important difference, which signifi-

cantly reduces the applicability of existing ontology tools and methods when dealing

with PROHOW. For example, the OntoClean methodology for ontology evaluation de-

veloped by Guarino and Welty (2009) is not applicable to PROHOW as it is strongly

focussed on taxonomic relations.

As part of the NeOn method, related ontological and non-ontological sources, such

as process description languages and instructional websites, were analysed and incor-

porated in the formalisation as far as possible. This integration of resources is meant

to make the formalisation compatible both with formal languages and with informal

instructional resources. The model generated by this method was translated into the

Automated Planning language PDDL to show its compatibility with existing formal

languages. Its compatibility with informal instructions, instead, will be validated in

the following chapter, which focuses on the automatic extraction of PROHOW instruc-

tion descriptions from real-world instructional websites.



Chapter 5

Know-How Acquisition

Procedural knowledge can be found on the web in many different formats. For ex-

ample, instructions are commonly found in a textual format, such as those found on

the wikiHow website,1 or in a visual and audio format through instructional videos,

such as those found on the Howcast website.2 Other forms of procedural knowledge

can also be found in a non-instructional format, such as in Question and Answering

(Q&A) websites or in social media posts. Human procedural knowledge on the web

covers a wide range of subjects, such as cooking recipes,3 technology hacks,4 and

business know-how.5

This variety of formats has led to the development of different approaches to ex-

tract procedural knowledge. In this chapter I will demonstrate how to extract proce-

dural knowledge from semi-structured textual step-by step instructions. The notion of

semi-structured resources used in this thesis refers to the notion of HTML documents

conforming to certain templates (Álvarez et al. 2008). This type of instructions has

been chosen because it is a class of resources that is both common and easy to pro-

cess. My proposed approach is complementary to existing pieces of work, which I

have reviewed in Section 2.3, on extracting procedural knowledge from a wider range

of sources using probabilistic approaches. Although more widely applicable, those

approaches suffer from limitations in precision and recall. These limitations are par-

ticularly problematic during the execution of instructions, and especially when this

involves collaboration, since agents might need to reason about the state of the execu-

1http://www.wikihow.com/ (accessed on 17/10/2017)
3https://www.wikihow.com/Make-Pancakes (accessed on 17/10/2017)
4https://snapguide.com/guides/turn-your-smart-phone-into-a-wi-fi-hotspot/ (ac-

cessed on 17/10/2017)
5https://www.wikihow.com/Create-an-Investment-Plan (accessed on 17/10/2017)
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tion of a task in exact terms in order to achieve coordination.

This chapter is organised as follows. I define a specific knowledge-acquisition

problem in Section 5.1, and I propose a method to address it in Section 5.2. I evaluate

this method with a set of experiments (Section 5.3), describe its results (Section 5.4),

and assess the extent to which they solve the original problem (Section 5.5). In Section

5.6 I demonstrate how the core principles of this method can also be used to acquire

know-how directly from users. I then conclude the chapter with a summary of its main

findings in Section 5.7.

5.1 Problem Description

The problem addressed in this section is the automatic extraction of procedural know-

ledge from human-made textual instructions. In an effort to address this problem, the

following hypothesis is formulated:

Hypothesis 3. The proposed knowledge extraction method applied to a standard semi-

structured textual representation of instructions automatically generates a complete

and correct procedural knowledge representation of those instructions in the PROHOW

model.

The extraction method proposed in this thesis will be described in Section 5.1.1.

A set of instructions is said to be semi-structured if two semantic relations, namely

the dependency between tasks, and their decomposition into sub-tasks, are represented

by certain structural (i.e. non-lexical) properties, such as the relative position of two

pieces of text in a document. If these structural properties carry the same meaning

across all of the documents contained in a website, then this website is said to contain

textual representations of instructions that are semi-structured in a standard way.

Following the methodology presented in Section 3.2.1, I define the usage of the

terms “correct” and “complete” in Hypothesis 3 with respect to the competency ques-

tions defined in Section 4.7.3 for instructional articles, namely Q1 and Q2:

Complete The PROHOW representation P of a set of instructions I is called complete

if for every answer a of a competency question q that human judgement would

generate, a could also be inferred automatically as a correct answer for question

q over representation P.
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Correct The PROHOW representation P of a set of instructions I is called correct if for

every answer a computed on the representation P for a competency question q,

human judgement would accept a as an answer of question q for instructions I.

To avoid additional complications of interpreting human judgement, I assume that a

human expresses it by selecting a number of items in a set of options generated from

the available resources. For example, a human could select in a list of task labels the

ones that he or she believes represent the steps of another task. Options that do not

appear textually in the set of instructional resources are not considered candidate for

human judgement. This approach for computing human judgements can be used to

verify or falsify the given hypothesis.

One important assumption made in this thesis is that the original sets of instructions

are correct themselves. In this thesis this will be called the sic assumption (from Latin

sic erat scriptum, meaning “thus was it written”). Under this assumption, no effort is

made to validate or rectify the original sources. Due to the natural fallibility of human

generated content, errors can in fact be found in the original sources of the instructions.

These errors can be grouped into two categories. Semantic errors occur in the human-

understandable description of an entity. For example, a step of a cooking recipe that

should communicate that the oven needs to be preheated to 180 degrees can be said

to be semantically incorrect if its textual label reads as follows: “preheat the oven to

200 degrees”. Structural errors are errors that affect the relations between the various

components of a set of instructions. For examples, if the step about preheating the

oven is defined as a method instead of a step, then it is said to be structurally incorrect.

If errors exist in the original sources, the proposed method should generate a faithful

representation of the erroneous source.

5.1.1 Know-How Acquisition from Semi-Structured Resources

One of the advantages of a simple vocabulary that closely models how humans de-

scribes procedures, as discussed in Section 4.5, is the ability to easily extract know-

ledge from human-generated instructions. Explicit representations of PROHOW-like

concepts are not rare in such instructions. For example, websites like wikiHow ex-

plicitly subdivide instructions into an ordered set of steps and clearly identify the re-

quirements for such instructions. In the context of this thesis, therefore instructional

resources contained in wikiHow can be said to be semi-structured. It is important to

note that this structure is not the result of a dedicated annotation process, but it is
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instead spontaneously created by humans for humans. A more structured representa-

tion of a process, in fact, is not only more understandable by machines, but first and

foremost by people. This structure is considered good practice as it makes the overall

description of the process clear and reduces ambiguities. In fact, many websites like

wikiHow, Snapguide and Howcast do not only recommend such practice, but require

it for all of their instructional pages.

As a concrete example, we can consider the following set of instructions in both

unstructured and structured format which arguably contain the same semantic content:

Listing 5.1: A pancake recipe as an unstructured set of instructions.

This set o f i n s t r u c t i o n s w i l l t e l l you how to make a pancake . You

w i l l need eggs , mi l k and f l o u r . F i r s t o f a l l , prepare the mix . Then

pour the mix i n a hot pan . F i n a l l y cook i t u n t i l golden .

Listing 5.2: A pancake recipe as a semi-structured set of instructions.

How to Make a Pancake .

Steps :

1 . Prepare the mix

2 . Pour the mix i n a hot pan

3. Cook i t u n t i l golden

Requirements :

´ Eggs

´ Mi lk

´ Flour

Apart from the likely benefits to human understanding, semi-structured resources are

easier for machines to parse. For example, the question “how many steps does this set

of instructions have?” can easily be answered by counting the number of bullet-points

that immediately follow the “Steps” keyword. Similarly, the question “which is the

first step of the instructions?” can be answered by looking at the text in the first of

such bullet-points.

5.2 A Method for Know-How Acquisition

Exploiting the fact that instructions found within a particular website have a common

template, it is possible to create a rule-based knowledge extractor. This extractor would

apply certain rules to segment the page into components and detect their semantic role.
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For example, it might be the case that all the instruction pages of a website (and only

those) contain one HTML ordered list with label “Steps”, such that each element in the

list corresponds to a step of the instructions. In this scenario, an extractor could easily

identify these lists and extract from them the list of steps. Extractors could also be used

to exploit templates that are common throughout a website even though some pages do

not follow them. Web pages that do not adhere to these templates, however, might not

be parsed correctly.

Rules to extract the various components of a set of instructions from an web page

can be defined using the Cascading Style Sheets (CSS) selectors (Hickson et al. 2011).

CSS selectors define a syntax to identify specific elements within an HTML file. For

example, the CSS selector “div.steps” identifies all of the div tags which belong to

the class steps. These rules are specific to a particular template that is found within

a website. For this reason, a new set of rules might be required if the template of the

website changes, or if we want to apply this method to a different website. Given that

changes in the structure of a website tend to be infrequent, I argue that this is not a

severe limitation to my approach.

As an example, I will now list five rules that can currently6 be used to extract the

components of a set of instructions from wikiHow. I use the notation σpxq to refer to

the process of returning the set of HTML elements which match the CSS selector x.

Main Task : σph1q

Task Set : σph3`divą olq

Task Set Type : σpdiv.stepsą h3ą divq

Inner Sub-Steps : σpliq

Requirements : σpdiv.ingredientsą h2`divą ulą liq

The element identified by the Main Task rule contains label of the main task t described

in the set of instructions. Rule Requirements identifies the labels of the set of require-

ments R of the set of instructions (@r P R.requirespt,rq). Rule Task Set identifies the

labels of a set of tasks X which immediately decomposes t. If the elements identified

with Task Set Type contain the textual string “Method”, then X represents a set of al-

ternative methods (@x P X .has methodpt,xq). If they contain the textual string “Part”,

6Tested on the 28th of March 2017.
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then X represents a set of necessary parts (@x P X .has steppt,xq). Rule Inner Sub-

Steps is then applied to the inner-HTML of each method and part x to extract the labels

of their steps Y (@y P Y.has steppx,yq). The order by which the steps are found in the

file dictates how they should be ordered in the PROHOW representation. These rules

extract the HTML code snippet that generates the human-readable textual description

of each component of the set of instructions.

Once these components have been identified, they can be stored in RDF. A website-

specific procedural knowledge extractor can be seen as a system that takes a web page

from a specific website as an input, and outputs an RDF representation of the instruc-

tions present in the page, if any. To preserve provenance, the Web Annotation Vocab-

ulary (Young et al. 2017) is used. This vocabulary is used to formalise an annotation

object that relates the RDF description of a task (called body of the annotation) to the

specific portion of the original web resource from which it was extracted (called target

of the annotation). This annotation object can be enriched with further metadata, such

as information about when the extraction was performed, and by which system.

If the template used by an extractor is found consistently throughout a website, then

all the instructions within the website can be extracted. This ensures that the extracted

knowledge base does not suffer from a loss of recall. Moreover, if the template clearly

identifies the components of a set of instructions, then the extracted knowledge might

not suffer from a lack in precision.

An effective use of such an extractor is in combination with a web crawler, also

known as “spider”. A web crawler is software capable of automatically exploring

(crawling) web pages by following the HTML links found in the source code of the

pages. Web crawlers start their crawl with a non-empty list of URLs to visit. The list of

URLs that a crawler still needs to visit is called “frontier”, while the URLs that populate

this list at the beginning of a crawl are called seed URLs.

To extract the RDF representation of all the instructions found in a website, a

crawler can be initialised with one or more seed URLs pointing to pages from that

website, such as its main page. In practice, it is important to limit the crawl to pages

within the domain of the website, or otherwise the crawler will attempt to crawl all of

the web resources which are reachable by following links; a task that is not likely to

terminate within an acceptable time-frame. This can be simply done by allowing only

URLs from the website’s domain into the crawl frontier. Once a page is retrieved, its

source code will be fed to the extractor that will generate its RDF representation. The

URIs of the entities discovered are minted as described in Section 2.1.1. It should be
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How to 
Make a Pancake 

Steps:
1. Prepare the mix
2. Pour the mix 

in a hot pan
3. Cook until golden

Make a Pancake

ph
:h

as
_s

te
p

ph
:h

as
_s

te
p

ph:has_step

Prepare the mix Cook until golden

Pour the mix
in a hot pan

Requirements:
● Eggs
● Milk
● Flour

Flour

Milk

Eggs

ph:requires

ph:requires

ph:re
quires

ph:requires ph:requires

rdfs:label

rdfs:label

rdfs:label

rdfs:label

rdfs:label

rdfs:label

rdfs:label

Figure 5.1: Extraction of a PROHOW RDF representation from a semi-structured set of

instructions. To enhance readability, the RDF namespace prohow: has been shortened

to ph:.

noted that new URIs are minted for every run of the extraction. This has the advantage

that if an entity has changed between the time when two extractions are performed,

then each version of this resource will have its unique URI. For example, the step of

a process might initially have label: “Preheat the oven to 180 degrees”, which is later

changed to “Preheat the oven to 200 degrees”. These two different versions of the

same step are arguably not equivalent, and this is reflected by assigning different URIs

to them. The drawback of this approach, however, is that it can generate multiple URI

synonyms for the same entity, if this entity does not change between extractions.

5.3 Experiments in Knowledge Extraction

I have tested this approach to knowledge extraction on the wikiHow and Snapguide

websites (Pareti et al. 2014a,b). The wikiHow website is a community-driven effort

to create a high-quality and comprehensive repository of human know-how. Similarly

to Wikipedia,7 each set of instructions within wikiHow can be edited by any user,

making the curation of its content a communal responsibility. This fact generally leads

to a consistently high quality of the articles, but at the same time to a high level of

7http://en.wikipedia.org (accessed on 17/10/2017)
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standardisation of the instructions. The policy of wikiHow, in fact, is to favour the

integration of all the know-how about a certain task within a single set of instructions,

and to define different methods only when this is strongly required.

This is in stark contrast to Snapguide, a know-how repository mainly targeted at

mobile users. Within Snapguide, sets of instructions belong to individual users, which

are the only ones allowed to edit them. It can be observed that this leads to a much

richer variety of solutions to complete the same task, as each user is allowed to describe

their particular approach to achieve a goal. However, without benefiting from a com-

munity effort, the quality of the articles can vary greatly. While one Snapguide user

might write excellent instructions, another one might write intentionally misleading

ones. In several cases, in fact, I have observed steps with an unintelligible description

or with no description at all.

The main reason behind my choice of these websites is that they contain semi-

structured procedures that adhere to a standard template. For both websites, the tem-

plate includes an ordered list of steps and a set of requirements. In the case of wiki-

How, this template also includes an optional subdivision of steps into different meth-

ods, such as different ways to prepare a pancake, or an optional further decomposition

of steps into sub-steps. In the English version of wikiHow, methods were identified

when different lists of steps were grouped under the “Method” keyword. Multiple

lists of sub-steps, instead, were identified when grouped under the keyword “Part”.

The PROHOW vocabulary can capture this semantic distinction by connecting the main

goal to each of the lists with the relation prohow:has_method in the former case, and

prohow:has_step in the latter.

Other reasons behind this choice of websites are the following:

• They are leading examples of instructional websites, having among the largest

number of articles and users. This was shown in Table 4.1 in the previous chap-

ter.

• They are domain independent. Instructions of any type can be added to the

website, whether it is related to cooking, dating, technology or any other field.

• Their differences provide evidence of the generality of this method. For example,

one of them is community-driven, while the other is user-driven; one of them

targets generic web users while the other focuses on mobile users.

• Their terms of service at the time when this experiment was performed, namely
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in May 2014, were compatible with this study. The content uploaded on wiki-

How, for example, is free to modify, republish and share under the Attribution-

Noncommercial-Share Alike 3.0 Creative Commons License.8 Snapguide, at the

time this experiment was performed, did not reuse a standard licence. However,

its terms and conditions were compatible with this experiment.

While this knowledge extraction focused on extracting PROHOW relations between

entities, more information about a set of instructions can be usually found in a web

document. For example, a website might publish the number of views of a set of

instructions, its rating, or some other measure of its quality. While these pieces of in-

formation can be seen as website dependent, a common type of additional information

comes from the category of a set of instructions. Websites like wikiHow and Snapguide

classify their sets of instructions under a certain number of categories. For example,

instructions on “how to make a pancake” could fall under the recipes category, while

the one on “how to apply for a job” could fall under the employment category. The two

category structures of wikiHow and Snapguide were extracted and and represented as

two hierarchies of rdfs:Class instances connected with rdfs:subClassOf relations.

These category structures are prominently displayed in the wikiHow and Snapguide

websites. Information on the exact category structures that were found when this study

was made has been published online.9

To ensure interoperability, the two hierarchies were manually integrated into a uni-

fied hierarchy. It was possible to perform this integration manually as Snapguide’s

hierarchy is a flat set of 17 different categories, which could be individually linked

with their closest wikiHow counterpart. For example, the Snapguide category for food

was labelled as a subclass of the wikiHow category for food and entertainment. Over-

all, the unified hierarchy consists of 2759 categories linked together by 2742 subclass

relations.

5.4 Knowledge Extraction Results

The results of this knowledge extraction are listed in Table 5.1. Overall, more than

200,000 sets of instructions were analysed and decomposed into over 2.5 million la-

belled entities. These statistics cannot be compared with official figures as up-to-date

8http://creativecommons.org/licenses/by-nc-sa/3.0/ (accessed on 17/10/2017)
9https://github.com/paolo7/KnowHowDataset (accessed on 17/10/2017)
9http://www.howcast.com/ (accessed on 17/10/2017)
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wikiHow Snapguide Total

Number of instruction articles (C.1) 166,664 44,464 211,128

Requirements of main processes (C.3) 335,962 194,390 530,352

Main processes with requirements 59,166 (35.5%) 34,925 (78.5%) 94,091 (44.5%)

Steps (C.4) 1,361,169 498,914 1,860,083

Main processes with steps 166,518 (99.9%) 42,117 (94.7%) 208,635 (98.8%)

Methods (C.5) 56,170 0 56,170

Main processes with methods 18,295 (10.9%) 0 (0%) 18,295 (8.6%)

Total number of labelled entities (C.6) 1,920,575 737,768 2,658,343

Table 5.1: Statistics computed on the HOWDB dataset generated in May 2014. The

reference in brackets refers to the related SPARQL queries listed in Appendix C. These

are not official figures reported by the websites themselves.

official figures were not available at the time the experiment was run. As described

in the preceding section, these instructions come from wikiHow and Snapguide. This

dataset, that will be referred to as HOWDB, has been published on the GitHub10 and

Datahub11 websites. The unified hierarchical structure of the wikiHow and Snapguide

websites has also been published along with this dataset. The sections of HOWDB con-

taining wikiHow and Snapguide articles will be called, respectively, HOWDB-wikiHow

and HOWDB-Snapguide.

Table 5.1 also lists the number of requirements, steps and methods that were found,

along with the number of set of instructions that contain these types. As it can be ex-

pected, almost all of the dataset (98.8%) is composed by tasks which are decompos-

able with steps. Instructions with requirements are very common, but more frequent

in Snapguide (78.5%) than in wikiHow (35.5%). This could be a result of a higher

focus of Snapguide in the cooking and crafts domain, which typically require a set

of ingredients and tools. Sets of instructions on social know-how, such as “How to

Communicate with a Deaf Person”, are instead popular on wikiHow, and they often

do not have specific requirements. Figures 5.2, 5.3 and 5.4 show, respectively, the

distribution of the number of steps, requirements and methods across the set of in-

structions. Figures 5.2 and 5.3 compare the whole dataset of all the sets of instructions

with its Snapguide and wikiHow partitions. These figures show a very similar distri-

bution of the number of requirements across the two websites. This similarity is also

10https://github.com/paolo7/KnowHowDataset (accessed on 17/10/2017)
11https://w3id.org/knowhow/dataset (accessed on 17/10/2017)
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Figure 5.2: Normalised histogram of the number of steps of the instructions from wiki-

How, Snapguide and their union. Only sets of instructions with at least one step are

considered.

reflected by the average number of requirements per set of instructions, namely 5.6 for

wikiHow and 5.5 for Snapguide. The number of steps, on the other hand, follows a

slightly different distribution, with wikiHow instructions having a lower average (8.1)

and standard deviation (5.5) than the average (11.8) and standard deviation (7.7) of

Snapguide instructions. This difference could be attributed to to wikiHow’s commu-

nity editing which results in a larger degree of standardisation, such as a more standard

and self-contained number of steps per article. Methods appear in about one in ten sets

of wikiHow instructions. Each set of instructions with methods has an average of 3

methods, and their distribution is shown in Figure 5.4.

These results demonstrate the existence of a large class of instructional resources

that can be automatically converted into a structured representation. More specifically,

these results can be seen as evidence that semi-structured instructional websites are a

significant portion of online know-how, and they can be turned into an RDF represen-

tation using the PROHOW vocabulary. Although the experiments were conducted only

on two websites, it can be assumed that this method would lead to similar results on

other semi-structured instructional websites such as Instructables12 or BBC Recipes.13

12http://www.instructables.com (accessed on 17/10/2017)
13http://www.bbc.co.uk/food/recipes/ (accessed on 17/10/2017)
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Figure 5.3: Normalised histogram of the number of requirements of the instructions

from wikiHow, Snapguide and their union. Only sets of instructions with at least one

step are considered.

5.4.1 Multilingual Know-How Extraction

One of the advantages of structure-based knowledge acquisition is language indepen-

dence. In wikiHow, instructional articles have the same structure across different lan-

guages. It is therefore trivial to extend the proposed knowledge extraction approach to

languages other than English. To demonstrate this point, a crawl of wikiHow has been

performed over 15 different languages. The results of this knowledge extraction are

detailed in table 5.2 and the extracted RDF data has been published on the data-science

platform Kaggle.14 This dataset containing multilingual instructions from wikiHow

will be called HOWDB-Multilingual.

It should be emphasised that the data discussed in this thesis refers only to the

HOWDB dataset, which was obtained from a crawl of those websites performed in May

2014, and restricted to English only. While this data accurately describes properties

of instructions on these websites at that particular time, these properties are known to

have later changed. For example, the number of know-how articles in these repositories

has been steadily growing larger over time.

14https://www.kaggle.com/paolop/human-instructions-multilingual-wikihow (accessed
on 17/10/2017)
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Figure 5.4: Histogram of the number of methods of the instructions with at least one

method.

Language Number of Articles Language Number of Articles

Russian 127,738 Dutch 19,318

Spanish 120,507 Arabic 15,589

Portuguese 92,520 Czech 10,619

Chinese 82,558 Thai 10,213

Italian 79,656 Vietnamese 8,670

French 60,105 Korean 7,606

German 57,533 Hindi 6,519

Indonesian 39,246

Table 5.2: Statistics of the multilingual extraction performed in February 2017.

5.5 Analysis of the Extracted Data

Are the extracted PROHOW instruction representations correct and complete? Follow-

ing the methodology outlined in Section 3.2.1 we can address this question by con-

sidering the competency question previously set for this type of data, namely Q1 and

Q2. In particular, human judgements can be collected to determine whether human

answers to these questions would differ depending on whether humans are exposed to

the original instructional webpages, or to a visualisation of the knowledge extracted

from them.

I argue that such experiment is not required, as the extracted knowledge is equiv-

alent to the one contained in the source webpages with respect to the competency
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Figure 5.5: Screenshot of a visualisation of the set of instructions on “How to Make

Pancakes in the Oven” published on wikiHow.

questions. In fact, the knowledge extraction system I proposed extracts a knowledge

model which directly maps to the structure of the original instructional webpages. As

a result of this, the extracted knowledge can be visualised in an equivalent way as in in

the original sources.

For example, we can consider the set of instruction on “How to Make Pancakes in

the Oven” available on wikiHow.15 Figure 5.5 displays a screenshot of a browser vi-

sualisation of this set of instructions. It should be noted that this visualisation has been

edited by removing the pictures that were originally displayed along with each step

15http://www.wikihow.com/Make-Pancakes-in-the-Oven (accessed on 17/10/2017)
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Figure 5.6: Screenshot of a visualisation of the PROHOW data extracted from the set of

instructions displayed in Figure 5.5.

of the set of instructions. In this work, I am assuming that wikiHow and Snapguide

instructions are primarily textual. Images, instead, are assumed to be useful, but not

necessary, to make sets of instructions more understandable. If this assumptions were

found to be false, the same technique used to select textual description of the compo-

nents of a set of instructions can be extended to detect and record images.

We can then compare Figure 5.5 with Figure 5.6, which displays the screenshot

of a visualisation generated from the PROHOW data extracted from the same webpage.

While these figures differ in some of their graphical details, the textual content can be

arguably be considered equivalent. This equivalence is not specific to this particular

set of instructions, and it can be generalised to the other sets of instructions.

More specifically, Question Q1 asks what set of sets of requirements are needed by

a task t. The vast majority of HOWDB instructions contain a single list of requirements.

I assume that the human interpretation of this list is the set of entities needed by the

task. In this case, under the sic-assumption, the list is an exhaustive and correct set of

requirements needed by the task. Since all of the list items are collected by the crawler,

and since their human-understandable representation is extracted without modification,

it can be concluded that the extracted PROHOW representation of these requirements is

also complete and correct.
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Some of the articles in wikiHow, however, contain multiple lists of requirements.

It is unclear in this case whether all of the requirements in all of the lists are needed, or

whether satisfying only one of the lists is sufficient. In HOWDB-wikiHow, this multiple

lists of requirements were found in 1,164 articles (computed with SPARQL query C.7),

a small portion of the overall dataset. If these articles are discarded, HOWDB-wikiHow

would lose 0.7% recall. If they are included, then the final dataset would have up to

a 0.7% loss of precision. For completeness purposes, the current version of HOWDB-

wikiHow includes articles which have multiple sets of requirements and it makes the

conservative assumption that all of them are needed. Although the current version

of the dataset does not address this problem, approaches to determine the particular

semantics of these lists can be easily imagined. If certain items are repeated across

these lists, then it is likely that only one of the lists is needed. For example, a high

degree of overlap can be expected between the list of requirements “Ingredients for the

chocolate cake” and the list “Ingredients for the fruit cake”. Moreover, the name of

the lists can often provide clues as to which part of the instructions they apply to. For

example, it might be possible to discover that both lists of requirements “Ingredients

for the sponge base” and “Ingredients for external decoration” are needed, if they map

to two necessary parts of the instructions “Make the sponge base” and “Make the

external decoration”.

The same argument made for competency question Q1 can be extended to ques-

tion Q2. All of the instructions in HOWDB-Snapguide and most of the instructions in

HOWDB-wikiHow contain a single list of steps. I assume that the human interpretation

of a list of steps of a super-task is the set of sub-tasks needed in order to complete

the super-task. Under the sic-assumption, if the original list of steps is complete and

correct, then so will be the extracted PROHOW representation. Some instructions in

HOWDB-wikiHow contain multiple lists of steps, and it is therefore important to deter-

mine if all of them are needed, or if each list of steps represents one of multiple methods

to complete the instructions. Fortunately, the PROHOW model can reliably capture this

semantic distinction since the wikiHow website consistently uses two different terms,

“Part” and “Method”, to explicitly discriminate between these two different scenarios.

Therefore, the PROHOW representation of a set of instructions can be seen as semanti-

cally equivalent to the human interpretation of the same set of instructions with respect

to competency question Q2.

It should be mentioned that certain steps and requirements of a set of instructions

can be considered as “optional”. The concept of an optional task could be a useful
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extension of the PROHOW model, but I will argue now why it is not required for the

scope of this project. For example, we can consider these three steps of a process t to

make tea: a: “boil water”, b “add tea leaves in the boiled water” and c: “optionally,

add milk and sugar”. Although step c can be considered an optional task, this does not

change its semantic interpretation according to the PROHOW model, or in other words,

that all three steps a, b and c need to be accomplished before t can be considered

complete. In fact, it would not be correct to assume that an agent that has completed

steps a and b has finished completing task t. For example, a waiter might follow

this procedure to serve tea to a customer. Even though the customer might not want

sugar and milk to be added in the tea, the waiter should acknowledge this step before

assuming that the overall goal is complete.

By analogy with the mathematical difference between a model that does not contain

a set, and a model that contains the empty set, the lack of an action should not be

confused with the act of performing an empty action. The concept of empty actions

is common in many process description languages. Intuitively, an empty action is an

action that can be accomplished by an agent simply doing nothing, but it is an action

that needs to be accomplished nonetheless. Within the PROHOW model, an optional

task could be modelled as a task that can be marked as complete after completing an

empty action.

The evaluation of these results shows how the formulated hypothesis is validated

on the HOWDB-Snapguide dataset, and how it is validated on a specific subset of the

HOWDB-wikiHow dataset amounting to 99.3% of the instructions extracted from wiki-

How. This hypothesis has important practical implications. Given the availability of

large domain-independent instructional websites, the validation of this hypothesis im-

plies that large datasets of PROHOW procedures can already be created automatically.

Moreover, the fact that such websites are populated by non-expert web users demon-

strates that PROHOW representations of previously unknown sets of instructions can be

acquired on demand by non-expert users, for example through the use of forms.

5.6 Know-How Acquisition from Forms

Knowledge extraction from a corpus of existing resources can help bootstrap the cre-

ation of a knowledge-base. When new knowledge is created, however, it can be more

efficient to acquire it directly from the users. A typical way in which users can help a

system to acquire knowledge is through the use of forms. Forms, such as HTML forms,
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can be seen as a list of fields. In a simple form, each field is characterised by a label,

which explains to the user what type of input is required, and by an input field, which

collects the input from the user and optionally formats it.

The large volume of existing semi-structured instructions can be taken as evidence

that non-expert users are familiar with concepts such as “steps”, “methods” and “re-

quirements”. It is therefore possible to create a usable form that acquires the same type

of information contained in semi-structured instructions. I have created a prototype of

this kinds of form as and it is available online as part of the KnowHow4j16 tool. This

tool is entirely written in Javascript and it can be used in any modern browser. It is

composed of two functionalities, namely an editor and a visualiser. I will present now

the editor functionality of this tool, while the visualiser functionality will be discussed

later in Section 7.2. The KnowHow4j editor is a form to acquire PROHOW representa-

tions of semi-structured instructions provided by the user. This form contains a single

text field, where users can list the description of a task, along with a list of steps,

methods and requirements. Users are asked to follow a simple convention, namely to

write each step, method or requirement in a new line, respectively prefixed with the

keywords “step”, “method” or “requirement”.

After the user completes the form and clicks on the “Parse into RDF” button, their

input is parsed into an RDF representation and then translated into an intuitive human-

readable representation in HTML. This step allows the user to detect whether the ma-

chine’s interpretation of the data is correct, as errors in the interpretation will result

in an incorrect human-readable representation. When the user is satisfied with the re-

sult, he or she can retrieve the generated HTML code snippet of the instructions. This

snippet can then be posted on a web page by the user, either manually or by using a

web page creation tool which accepts HTML input. This code snippet offers a compact

human readable representation of the instructions, along with the corresponding PRO-

HOW RDF data encoded in the same HTML snippet using RDFa (Herman et al. 2015).

RDFa is W3C recommendation that specifies a standard approach to embedding RDF

data into HTML elements and allows HTML documents to be both human and machine

readable.

The HTML and RDFa code generated by KnowHow4j demonstrates how the PRO-

HOW structured representation of instructions can co-exist with instructions on the

web. Procedural knowledge does not have to be stored in dedicated databases but it

can seamlessly enrich instructional web pages and make them both human and ma-

16https://github.com/paolo7/khjsdevelop (accessed on 17/10/2017)
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chine readable. To avoid exposing the user to HTML code one could imagine this tool

automatically posting the HTML snippet on a blog or social website.

5.7 Conclusion

In this chapter I have presented a method for automatically acquiring a structured

representation of semi-structured instructions that follows the PROHOW vocabulary.

Semi-structured instructions are instructions where its components, such as steps and

requirements, can be clearly identified by its formatting. This type of instructions

has been identified as a promising target for know-how acquisition thanks to its large

availability and ease to analyse.

To demonstrate the suitability of PROHOW to model real-world instructions I have

parsed two instructional websites, wikiHow and Snapguide. Testing this approach

on two different mainstream websites provides evidence of the generality of this ap-

proach, which is believed to be applicable also to other semi-structured instructional

websites. However, I have not conducted further studies to determine the generality of

this approach with more precision.

This experiment extracted of all the semi-structured instructions from these web-

sites and resulted in a dataset of over 200,000 instructions. The quality of this dataset

has been assessed as complete and correct with respect to the original sources. A

similar parsing approach to the one used in this experiment can be used to acquire

know-how from users on demand. To demonstrate this, I have developed a prototype

of a web-form that can parse users’ input into PROHOW data.

The main limitation of the knowledge extraction method I proposed is its inability

to deal with unstructured resources, namely resources whose structural properties can-

not be reliably interpreted semantically. Since many types of unstructured know-how

resources are available on the web, alternative approaches to know-how acquisition

have been developed. I have presented a review of these systems in Section 2.3. Al-

though capturing know-how from a wider range of resources can be useful, the lack

of structure in these resources makes this a significantly harder problem. This is the

reason why the precision and recall of the data extracted by these alternative systems

is lower than the one obtained with the approach proposed in this thesis. I see related

work on know know-how acquisition as complementary to the method I proposed in

this chapter. More specifically, the method I proposed can be used to generate a core

dataset containing instructional knowledge which can be extracted with high accuracy.
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This dataset could then be extended with more details generated by other know-how

acquisition systems.



Chapter 6

Know-How Interlinking

In the previous chapter, an efficient method for extracting the predicates of the PRO-

HOW model from semi-structured instructions was presented. These predicates provide

information on how the various entities within a set of instructions relate to each other.

However, they do not provide information on the relations that can exist across differ-

ent sets of instructions or link to other types of data. In other words, the results of the

previous chapter only describe isolated sets of instructions, and do not provide means

for reasoning about them as part of a more general knowledge framework.

Instructional knowledge, however, is not isolated, and many relations exist with

other types of knowledge. Relations of the types represented by PROHOW can be

discovered between different sets of instructions, for example, when instruction set

A describes how to perform a step of instruction set B. Relations to non-procedural

knowledge can also be found; for example, an ingredient required by a set of instruc-

tions can be related to its description in a factual knowledge base.

In the context of ontologies, or computational knowledge bases, terms defined in

a vocabulary carry a standard meaning by themselves, such as the term prohow:task

defined in the PROHOW vocabulary. Databases, however, are typically populated with

entities that are not defined in any vocabulary. For example, it is not possible to infer

the meaning of entity :e/01 without any other contextual information. The meaning

of these entities, which cannot be derived from their identifier, is therefore defined by

their relation with other entities. For example, the relation rdf:type between :e/01

and prohow:task allows us to infer that :e/01 represents a task. In such a system, it

can be said that relations define the meaning of entities, and that adding more relations

to an entity makes its semantic interpretation more informative.

121
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6.1 Problem Description

The main challenge addressed in this chapter is how to link PROHOW instructions ex-

tracted from single web pages to additional knowledge sources. For example, the

PROHOW representation of a cooking recipe might detail the ingredients used in the

recipe. However, it might be unable to determine whether the recipe is vegetarian, as

it does not contain information on whether any of the ingredients should be considered

“meat”, information which might be available in another dataset. This problem can

be rephrased as the goal of making PROHOW instructions semantically more informa-

tive by integrating related datasets. In an effort to achieve this goal, I formulate the

generic hypothesis that the PROHOW representation of instructions can be automati-

cally integrated with external data both of the procedural and factual kind, with a level

of quality acceptable by humans. In order to demonstrate that this level of quality has

been achieved, I will compare the results of the integration system with equivalent re-

lations already being used by humans. More specifically, I will compare them with

equivalent relations found on the wikiHow website.

This generic hypothesis is split into the following two more specific hypotheses.

The first hypothesis aims to demonstrate that different PROHOW representations of

instructions can be integrated automatically.

Hypothesis 4. The proposed data integration system discovers PROHOW relations be-

tween the PROHOW representations of instructions with higher precision and recall

than existing equivalent relations already being used by humans.

The second hypothesis aims to demonstrate that the PROHOW representation of

instructions can be integrated with external non-procedural datasets:

Hypothesis 5. The proposed data integration system discovers rdf:type relations

between the PROHOW representations of instructions and DBpedia with higher preci-

sion and recall than existing equivalent relations already being used by humans.

The integration of multiple datasets offers several advantages, most notably an in-

crease in the richness of the data. For integrated datasets, it is typically true that the

“whole is greater than the sum of its parts”. All of the query answers that were com-

putable in the original datasets are still computable after integration, as long as prove-

nance information does not get lost and it is known which facts were contained in

which dataset. But in addition to that, some answers that could not be computed by

any of the original datasets might be answerable by their integration. The potential
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benefits of integrating the PROHOW dataset with external datasets is formulated in the

following hypothesis:

Hypothesis 6. The proposed integration between a PROHOW dataset and DBpedia

discovers input/output relations between tasks with higher precision and recall than

existing equivalent relations already being used by humans.

An input/output relation between two tasks can be seen as the relation between

a tasks that requires a certain object as an input, and another task that produces the

same type of object as an output. For example, an input/output relation can be dis-

covered between an instruction set that produces a pancake, such as “How to Make a

Pancake” and an instruction set that requires a pancake as an ingredient, such as “How

to Decorate a Pancake”.

It should be noted that the relations mentioned in hypotheses 4, 5 and 6 do not

consider the context in which specific users create or use such relations, but instead

aim to capture a standardised representation of them. For example, different users

might have different opinions on whether two sets of instructions should be linked. At

the same time, however, websites like wikiHow try to standardise the creation of such

links by providing guidelines1 that its community should try to converge to.

Many choices need to be taken when formalising a domain into a dataset and pub-

lishing it online. While each of those choices can impact the final result, measuring

its quality is not trivial. This endeavour can be divided into two parts, the first one

being the formalisation of information in a certain domain into a semantic dataset, and

the second being the publishing of this dataset online. Certain aspects of a formali-

sation can be measured both quantitatively and qualitatively, for example in terms of

precision, completeness, and relevance to the domain of interest. The previous and the

current chapters provide an evaluation against such measures when describing how the

data has been created.

The second part of the endeavour is the act of publishing data online. Assuming

that this is done to enable the reuse of this data, then this data can be seen as open

data, which can be qualitatively measured in terms of the 5-Star Open Data publishing

scheme.2 With respect to this scheme, the following hypothesis can be formulated:

Hypothesis 7. Data generated by the proposed knowledge extraction and knowledge

interlinking method is 5-Star Open Data if published on the web under an open licence.
1https://www.wikihow.com/Weave-the-Web-of-Links-on-wikiHow (accessed on

17/10/2017)
2http://5stardata.info/en/ (accessed on 17/10/2017)
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Section 6.8 describes this ranking system and the notion of open data, along with a

validation of this hypothesis.

6.1.1 Data Integration as Linked Discovery

Data Integration can be seen as the generic problem of integrating multiple datasets.

This term has often been used to refer to one of two specific sub-problems, which I

call schema-level integration and record-level integration. The goal of schema-level

integration is to be able to make different datasets interoperable by providing a unified

view that allows them to be queried simultaneously. In traditional relational databases,

this refers to the integration of the database schema (Lenzerini 2002). In semantic

databases, this corresponds to activities such as ontology alignment, or ontology match-

ing (Otero-Cerdeira et al. 2015).

The second meaning of the term data integration, namely record-level integration,

is the one that I will use in this thesis. Record level integration is concerned with dis-

covering relations between the specific data records that populate a database. Typically,

this involves discovering when two records are equivalent, a process called record-

linkage (Fellegi and Sunter 1969), in order to merge them and avoid duplication. This

is a common process when integrating heterogeneous web-data (Michalowski et al.

2004).

In this thesis, I focus on a type of record-level integration called link discovery,

which generalises record linkage to semantic link types other than equivalence. In the

context of RDF data, link discovery can be seen as the process of discovering relations,

or links, between the RDF entities in the datasets. I adopt an equivalent definition of

link discovery as the one formulated by Ngonga Ngomo (2013). In this formalisation,

link discovery is the problem of discovering links of a specific type α between a set

of source entities S and a set of target entities T . To define this problem, we can

define two sets of entities 9S and 9T denoting the domains of interest, such as “cities”

and “countries”. We can then define a link type α as a function α : 9Sˆ 9T Ñ t0,1u

that maps pairs of values ă s, t ą, with s P 9S and t P 9T , to the value 1 if a link of

type α from s to t would be semantically correct, and to the value 0 otherwise. For

example, if α denotes the relation of a “city s being located within country t”, then

αpă Paris,France ąq “ 1 and αpă London,France ąq “ 0. Given two subsets of the

domain S Ă 9S and T Ă 9T , the goal of a link discovery system is to discover the set of

pairs G Ă T ˆ S such that ă s, t ąP G ðñă s, t ąP T ˆ S^αpă s, t ąq “ 1. Given
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our previous example of a link function α and the sets S “ tRome,Paris,Londonu and

T “ tFrance, Italy,Germanyu, the goal of link discovery would be to generate the set of

pairs G“ tă Rome, Italyą,ă Paris,Franceąu. Having reached an abstract definition

of a link discovery problem we can now analyse the two main issues than arise when

attempting to solve this problem computationally, namely the problem of quality and

the problem of efficiency.

6.1.1.1 The Quality Problem of Link Discovery

In a real world scenario, it is typically impossible to obtain the exact set G of links to

discover. In this case, the objective of a link generation system is to generate a result

set of links rGĂ 9Sˆ 9T which approximates the correct set G as much as possible. The

set G can then be called the gold standard that a linking system tries to approximate.

The quality of this approximation is measured by combining the precision and recall

measures. These measures are the ones that will be used to compare two population

of links, as described in Section 3.2.2. I will now present the formal definition of

precision and recall that I have adopted in the context of populations of links.

Precision The precision measure is a function P : p 9Sˆ 9T qˆp 9Sˆ 9T qÑ r0,1s defined as

the ratio between the number of correctly discovered links and the total number

of discovered links: Pp rG,Gq “ | rGXG|
| rG|

.

Recall The recall measure is a function R : p 9Sˆ 9T qˆ p 9Sˆ 9T q Ñ r0,1s defined as the

ratio between the number of correctly discovered links and the total number of

discoverable correct links: Rp rG,Gq “ | rGXG|
|G| .

Precision and recall can be combined in a single measure of the quality of an ap-

proximate link discovery system. This single measure is the result of a function

θ : r0,1sˆ r0,1s Ñ r0,1s which combines the precision and recall measures such that

a value of 1 is given to the highest precision and recall: θp1,1q “ 1 and a value of 0 is

given to the lowest precision and recall θp0,0q “ 0. Moreover, θ should not decrease

for higher values of precision and recall: yą z ùñ θpx,yq ě θpx,zq^θpy,xq ě θpz,xq

for any value of y, x and z in r0,1s. The most common θ function is the harmonic mean

H, which is used by the F-measure F to combine precision and recall into an accuracy

measure:

Fp rG,Gq “ HpPp rG,Gq,Rp rG,Gqq “ 2
Pp rG,Gq ˚Rp rG,Gq

Pp rG,Gq`Rp rG,Gq
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6.1.1.2 The Efficiency Problem of Link Discovery

The fundamental problem of generating links between resources is how to accurately

discover whether two resources should be linked, and optionally how. In any realistic

scenario, however, there is a second practical problem related to the computational

cost of considering all possible links between two sets of resources, since the possible

number of links grows as the product of the cardinality of those sets. A typical solution

to this problem is to divide the source and target sets into smaller subsets, and then only

consider links between certain subsets. This type of approaches alleviates memory

constraints when the whole set of links cannot be loaded in memory, but individual

subsets of it can (Hassan et al. 2015).

6.2 Related Work on Link Discovery

An extensive body of work already exists in discovering links between equivalent en-

tities (Winkler 2006). Existing approaches to link discovery in the context of web data

were reviewed by Nentwig et al. (2017). Typically, the discovery of equivalence rela-

tions is based on the assumption that two different records of the same entity, such as

different URIs referring to the same concept, will share similar properties. For exam-

ple, we might expect two records of the same person to have similar name and address

attribute, and two records of the same lake to have similar geographical coordinates.

A number of systems have been developed to perform equivalence linking, such

as SLINT+ by Nguyen and Ichise (2013) and KnoFuss by Nikolov et al. (2007). The

Silk tool, presented by Bizer et al. (2009b), can be used to discover links other than

equivalence instead. Silk can be configured to consider a number of similarity criteria,

such as string similarity measures, to create links between entities. Although such

links do not need to be equivalence links, they are based on similarity properties. For

example, Silk can be used to link film directors in dataset A to the films they directed

in dataset B by discovering an implicit equivalence between the directors described in

A and the directors described in B.

The LIMES system, developed by Ngomo and Auer (2011), is designed to dis-

cover links between entities based on their similarity if this similarity can be repre-

sented in a metric space. This system has been integrated with ORCHID, presented

by Ngonga Ngomo (2013), which is optimised to discover similarities between geo-

located resources. The LIMES system can also be said to be primarily focused on the
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discovery of equivalence relations, as it is based on similarity measures.

The link discovery problems I address in this chapter, such as discovering whether

one task is a step of another, are not equivalence links. Moreover, these types of

links represent complex semantic relations which cannot be easily reduced to a set of

similarity measures, such as string similarity. After an initial attempt at using the Silk

tool I discovered that a more flexible approach was required. In the next sections, I

will describe the method I developed to discover procedural links.

6.3 A method for the DBpedia Integration

Integrating human instructions with DBpedia involves finding links between procedu-

ral and declarative knowledge. Two of the most common relations at the intersection

of these types of knowledge are the concepts of inputs and outputs. The task “make a

pancake”, for example, can be seen as a task which outputs an object of type “pancake”

and requires, among others, the ingredient “milk” as an input. As discussed in Chapter

4, the PROHOW model does not explicitly represent objects. In PROHOW terms, there-

fore, the task “make a pancake” can be seen as one method to complete the task “obtain

a pancake” and that can only be done after completion of the task “obtain milk”.

With the term DBpedia link I will refer to a link between a task t and a DBpedia

resource r, such that task t can be interpreted as the task of obtaining an object of

the type described by resource r. Although t and r are semantically different, it will

be assumed that their natural language descriptions will share similar textual features.

Having obtained a textual representation of a task t, such as “one cup of milk”, I

tokenise it into a list of words and then attempt to identify a subset of it that better

identifies the type of the required object, for example the word “milk”. To identify the

relevant subsets of the label I perform syntactic parsing to identify the noun phrases in

the label. This process is used to discard other parts of a sentence which are less useful

in discovering DBpedia links, such as verb phrases. Part Of Speech (POS) tagging is

then used to select nouns and adjectives from each noun phrases. Overall, this process

generates a number of subsets of the original label which are deemed likely to contain

the textual description of DBpedia entities.

The textual label of the task t, or a subset of it, is used by the DBpedia Lookup

service3, a service that allows DBpedia entities to be searchable by keywords. In the

DBpedia Lookup service, resources are matched to keywords not only if such key-

3https://github.com/dbpedia/lookup (accessed on 17/10/2017)
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words appears in the title of its corresponding Wikipedia page, but also if they appear

in the text of a Wikipedia anchor link to that page. The textual label of a requirement

task t can be interpreted as a set of keywords to search for the most related DBpe-

dia resources. The number of resources returned by the DBpedia Lookup service can

be limited to a maximum. When a DBpedia resource is returned, my method com-

putes a score based on a measure the textual similarity between label t and the label

of the resource. The remainder of this linking method is performed in a different way

depending on whether t represents an input or an output of the process.

This type of integration can be seen as a link discovery problem between the source

set S of input and output tasks and the target set T of DBpedia resources. With the terms

DBpedia input links and DBpedia output links I will refer, respectively, to DBpedia

links from the input and output tasks of the set of instructions. The type of link α that

will be considered is the relation between a task that involves obtaining or creating

a certain object, and a DBpedia resource representing a type of that object. Since

the set of such tasks S in the HOWDB dataset has cardinality 5 ˚ 105, and the set of

DBpedia4 resources T has cardinality 6 ˚106, the space of all possible DBpedia links

|S| ˚ |T |, which has cardinality 3 ˚ 1012 , can be considered too large to be efficiently

explored in its entirety. The use of the DBedia Lookup Service is an approach to solve

the efficiency problem of link discovery. It is not necessary to consider links to every

possible DBpedia resource, but only to those returned by the DBpedia Lookup service.

If this service, on average, returns n resource candidates, with n ! |T |, only n|S| links

would need to be considered.

6.3.1 Input-Output Matching

The union of input and output links to DBpedia effectively results in new links between

tasks which will be called I/O links. An I/O link exists between a task a, such as

“prepare pancake batter” and another task b, such as “pancake batter”, requirement of a

task c, such as “make a pancake”, if task a outputs an object of a type that is subsumed

by the type of the object required by b. This match between inputs and outputs is

a common approach used in service composition (Constantinescu et al. 2004). This

approach is based on the principle that the output of a service can be used as the input

of another service, if the type of the output is subsumed by the type of the input. It is

assumed, therefore, that the type of the input refers to the most generic class of objects

4Official figures of the DBpedia version 2016-04 taken from http://wiki.dbpedia.org/
dbpedia-version-2016-04 (accessed on 17/10/2017)
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that the input is compatible with.

When analysing a set of instructions, I assume that the description of the require-

ment of a set of instructions defines the type of its input. More specifically, if the label

of a task t involves obtaining an object described as being of type x, then obtaining

any object of a type that is subsumed by type x can be seen as accomplishing task t.

For example, the requirement “pancake batter” would correspond to an input of type

“pancake batter”. This input can be matched with outputs of more specific types, such

as “vegan pancake batter”, as they are subsumed by the type of the input. However

more general types, such as “food”, cannot be matched.

6.3.2 Input Integration

If the analysed task t, such as “one cup of milk”, is a requirement of a main set of

instructions, such as “how to prepare a pancake”, then t will be considered as defining

an input of the process. The labels used in wikiHow and Snapguide to refer to these

requirements directly describe the object that needs to be obtained and typically do not

contain verbs. A link with a DBpedia concept is created if the DBpedia Lookup service

discovers an entity with a sufficiently similar label to t. To determine this similarity

I have empirically chosen a threshold of 0.8 for the Levenshtein distance between the

label of task t and the label of a DBpedia concept. If no such DBpedia concept is

found, a number of steps are taken to remove unnecessary words from the label of

task t, and then the search is computed again for subsets of the label of t. The steps

followed are the following:

1. The English stopwords “the”, “an” and “a” are removed.

2. Parentheses, and their contents are removed.

3. Units of measure are removed. A unit of measure can be detected when a unit of

measure word, such as “cup” or “liter” is followed by the particle “of”. The list

of units of measures used is given in Appendix E.1.

4. Symbols and digits are removed.

5. Adjectives which do not modify the type of an object, such as “grated”, “diced”

or “melted” are removed. This is an optional step to inject domain knowledge,

in this case in the cooking domain, that can help improving the performance of

the integration. The list of adjectives used is given in Appendix E.3.
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6. Connectives “and” and “or” and the symbols “&” or “/” are used to split the label

into multiple sub-components, which are then analysed separately.

These steps are followed incrementally until an entity with a sufficiently high similarity

score is found, or until all of these steps have been tried. If none of the above mentioned

transformations leads to the discovery of a DBpedia resource with a sufficient level of

textual similarity, then task t will not be linked to any DBpedia resource. If multiple

DBpedia resources with sufficient textual similarity are found, the one with the highest

score is selected.

If a requirement task is decomposed into one or more components, the type of the

connective defines whether all of the components are needed or if only one of them

is sufficient. Disjunctive connectives, such as “or”, result in a prohow:has_method

relation between the task and its components. For example, the sub-components a:

“eggs” and b: “milk” can be considered methods of a task x: “eggs or milk”, as x

can be completed, for example, by only accomplishing task a. Similarly, conjunctive

connectives, such as “and”, result in a prohow:has_step relation between the task

and its components. A task x: “eggs and milk” can only be considered complete, in

fact, if both of its components a: “eggs” and b: “milk” are complete.

6.3.3 Output Integration

While the inputs of a process are typically listed as the requirements of its set of instruc-

tions, the outputs are not explicitly defined. The outputs, and in general the effects, of

a process can be many. For example, the process of making a pancake might result not

only in the creation of a pancake, but arguably also in a greased pan and in a release of

heat. The analysis of the outputs described in this thesis does not attempt to identify

all the possible outputs of a task. Instead, it focuses on what can be called the main

output of a task. The main output of a set of instructions, if present, is the object that

the task is primarily intended to generate. It will be assumed that the main output of a

task is the object mentioned in the description of a task. For example, the main output

of a task on how to “make a pancake” will be considered a “pancake” and not “heat”

because the word “pancake” appears in its description while “heat” does not.

The definition of what a main output is suggests that its textual representation can

be found within the label of the task. While many words can appear in the label of a

task, not all of them represent outputs. A task will be considered as potentially having

a main output if the verb found in its label is a creation verb. A creation verb is verb
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which semantically implies the creation of an object, such as the verbs “create”, “pro-

duce” and “build”. The list of the creation verbs considered in this experiment is given

in Appendix E.2. The noun phrase that acts as the syntactic object of the creation verb

is considered as a candidate output. For example, in the task label “make a pancake”

the word “pancake” would be considered as a possible output because the verb “make”

is a creation verb. An attempt is then performed to link the text extracted from this

noun phrase to a DBpedia resource using the same approach previously described for

the input integration.

6.3.4 A Note on the Semantics of the Links to DBpedia

When linking PROHOW tasks and DBpedia entities, different approaches are possible.

I will now discuss the semantic differences of such approaches, along with their advan-

tages and disadvantages. It should be noted, however, that these different approaches

can be considered equivalent with respect to this thesis, and therefore they will not be

discussed any further beyond this section.

If the main goal is to have a simple and compact representation, a task such as

“1 liter of milk” can be related to DBpedia entities, such as dbr:Milk,5 with the

rdf:type relation, which relates instances with their class. Although practical in some

contexts, this formalisation can be said to be semantically imprecise. In fact, the task

of obtaining a requirement is not the same as the requirement itself. For example, an

object of type “milk” can have a weight, but it cannot be said to have been accom-

plished. Conversely, the “act of obtaining milk” does not have a weight, but it can be

said to have been accomplished.

To represent these links more correctly, the object that is being obtained should

be separated from the task that involves obtaining it. Given that PROHOW does not

represent objects, an extension of it would be required. This could be done for example

by adding a new relation such as prohow:obtains_object, which links the tasks

which represent obtaining an object, with the object itself. Using this model, the object

obtained by a task can now be described with additional properties such as a type or

a quantity. The RDF data in Listing 6.1, for example, describes the task “1 liter of

milk” (:requirement_milk) that involves obtaining an object (:milk_obj) defined

as something which is “milk” (dbr:Milk) and that amounts to the quantity of 1 litre,

using the Quantities, Units, Dimensions and Types (QUDT) schema.6

5I use the dbr namespace defined in Table 2.1 to refer to DBpedia resources.
6http://www.qudt.org/ (accessed on 17/10/2017)
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Listing 6.1: The PROHOW representation of the requirements of the pancake recipe.

:requirement_milk rdfs:label "1 liter of milk" .

:requirement_milk prohow:obtains_object :milk_obj .

:milk_obj rdf:type dbr:Milk .

:milk_obj qudt:hasQuantity :milk_quantity .

:milk_quantity qudt:quantityValue :milk_quantity_value .

:milk_quantity_value qudt:unit unit:L .

:milk_quantity_value qudt:numericValue "1" .

The topic of a Wikipedia page, such as the page for the concept of “milk”,7 is

represented in DBpedia as a “resource”, in this case: dbr:Milk. It is important to state

that DBpedia resources were not created to be used as classes. Arguably, while the

DBpedia resource for milk could be interpreted as the class of things that are milk, the

DBpedia resource for the city of Edinburgh, dbr:Edinburgh, should not be interpreted

as the set of things which are Edinburgh. The reason behind this semantic difference

is that the Wikipedia page for “milk” describes the abstract concept of milk, while the

Wikipedia page for “Edinburgh” describes the individual and tangible entity of this

specific city. Therefore, although direct rdf:type links to DBpedia resources can be

practical in certain domains, they are not guaranteed to be correct. DBpedia itself

treats certain resources similarly to classes, linking instances to their class with the

dbo:class relation. However, the choice of using a proprietary relation instead of the

most common rdf:type relation is a clear indication that these resources cannot be

assumed to be classes, at least in the RDFS definition of this term.

An attempt to solve this problem comes from the Product Types Ontology (PTO),8

which provides a set of alternative URIs to DBpedia resources to be used as classes.

For example, the URI pto:Milk can be used instead of dbr:Milk to denote the class

of things that are milk. Unfortunately, PTO does not currently discriminate between

DBpedia resources denoting concepts and those denoting individual entities. In fact,

the city of Edinburgh is also considered a PTO class (pto:Edinburgh), and more

specifically a “product or service”. As a result of this, the core semantic problem of

whether a DBpedia resource can be considered as a class or not remains unsolved.

7http://en.wikipedia.org/wiki/Milk (accessed on 17/10/2017)
8http://www.productontology.org/ (accessed on 17/10/2017)
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6.4 A method for Decomposition Links

As the popularity of step-by-step instructions show, most complex tasks can be decom-

posed into simpler steps so that an agent unable to complete a task as a whole might

be able to complete it by completing each of its steps individually. However, it is not

uncommon that the steps themselves involve complex operations that the agent is still

unable to accomplish. For example, a set of instructions on how to “apply for a job”

might include the step “prepare a resume”. An agent that is not capable of preparing a

resume might wish for this step to be further decomposed into even simpler sub-steps,

such as “list your previous work experiences”. It is apparent therefore, that the decom-

position of tasks into sub-tasks does not result into a two-layer structure made of either

complex or simple tasks. Instead, task decomposition can be seen as a multi-layer task

graph where tasks at each level can be decomposed into progressively simpler tasks or

composed together into progressively more complex ones.

A task network describing a significant portion of human know-how would contain

too much information to be displayed to a human as a single document. It is necessary,

therefore, to divide this network into smaller subsets of a more convenient size. These

subsets are what we call sets of instructions, and each of them describes a limited num-

ber of sub-tasks of a specific task. Although many related tasks cannot be described in

a single set of instructions, links to them need to exist if we want to be able to recreate

and traverse the original task network. For example, details on how to prepare a re-

sume do not have to be included in the set of instructions on how to apply for a job, as

long as they can be discovered by following a link between the two sets of instructions.

In a single set s of instructions we can identify a top level task and a set of bottom

level tasks. The top level task t of s is the main task that the instructions are designed

to describe. Within s, the main task is decomposed into sub-tasks, but it is not used to

decompose any task itself. Conversely, the bottom level tasks represent the locally most

fine grained level of task decomposition. Within s, no bottom level task is decomposed

into simpler tasks, while they are all used to decompose more complex tasks. With

respect to the PROHOW statements contained in a single set of instructions, Equations

6.1 and 6.2 define, respectively, top and bottom level tasks.

toppxq ðñ pDy.has steppx,yq_has methodpx,yqq^

p Dy.has steppy,xq_has methodpy,xqq
(6.1)

bottompxq ðñ pDy.has steppy,xq_has methodpy,xqq^

p Dy.has steppx,yq_has methodpx,yqq
(6.2)
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Tasks which are not of either of these two types will not be considered in this

phase, as they are already linked with both more complex and less complex tasks, or

they are requirement tasks that are already considered in the DBpedia integration. The

goal of this phase, instead, is to link the top level tasks and the bottom level tasks

between different sets of instructions. More precisely, we can define this phase as a

link discovery problem between the set S of bottom level tasks and the set T of top level

tasks for a relation α. Link discovery relation αpă s, t ąq equals 1 if the target element

t could be considered either a step or a method of the source element s according to

the PROHOW definition of steps and methods defined in Section 4.7. Links of this type

will be referred to as “decomposition links”

A top level task t describing “how to prepare a resume”, for example, could be

considered a possible method of the bottom level task a “prepare a resume”, as the

completion of task t would be sufficient to complete task a. However, task t could be

considered only a step of a task b “prepare a resume and attach it to the application

form”, as the completion of task t would complete part of task b, but not all of it.

Given the difficulty in establishing with high accuracy whether the execution of a top

level task is sufficient or not to complete a bottom level task, the safest assumption is

for the top level task to be considered a step of the bottom level one. In the PROHOW

model, a decomposition link between a top level task t and a bottom level task s can be

represented as t being the step of one possible method m for completing s, along with

potentially other steps. Listing 6.2 represents a possible representation of this link.

Other potential tasks that need to be performed are represented with the blank node

_:others. Task t requires the task _:others as other steps might need to be executed

before t. A blank node is an RDF feature which can be used to express the existence

of an entity in an RDF graph without having to explicitly refer to its URI. Without an

explicit mention of these other potential tasks, step t could be considered sufficient to

complete method m.

Listing 6.2: The PROHOW representation of a decomposition link between top level entity

:t and bottom level entity :s.

:s prohow:has_method :m .

:m prohow:has_step :t .

:m prohow:has_step _:others .

:t prohow:requires _:others .

Following the previous definition of a link discovery problem, two sub-problems
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need to be addressed: obtaining links with high quality and in an efficient way. The

problem of discovering links with high quality can be posed as the problem of discov-

ering whether two tasks should be linked. More specifically, given a top level task t

and a bottom level task s, along with a set of features describing each task, such as

their label, a classifier should determine whether the two tasks should be linked or not.

This problem does not have a simple and precise solution, as the decision on whether

two tasks should be linked is strongly dependent on the semantics of the tasks. In this

situation, a machine learning classifier can be trained to make this decision based on a

set of given features.

In this classification problem, each task can be defined with the following three

characteristics:

• a label;

• the “context”, or more specifically the labels of the other entities in the same set

of instructions;

• the category of the set of instructions the task belongs to.

Moreover, the Inverse Document Frequency (IDF) (Robertson (2004)) of each word

can be used to determine how rarely a word appears across different sets of instructions.

The occurrence of the same word across two labels can be considered more significant

for higher IDF values of the word.

Typically, the labels of a top level task are short and concise, while the labels of the

bottom level tasks can extend to several sentences. Therefore, it is often the case that

the label of the top level task is a sub-string of the label of the bottom level task, and

only in rare occasions would the two labels be of comparable length. When comparing

two tasks, their characteristics can be combined into a number of features. A few

examples of features that can be used are the following:

• the ratio of words of the label of t found in the label of s;

• the average IDF scores of the words in common between the labels;

• the number of common words in the tasks contexts;

• the average IDF scores of the words in common between the contexts;

• the number of categories and super-categories in common;
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• whether the sentence found in the label of t and its closest match in the label of

s are both under or outside the scope of negation.

This last feature can be useful, for example, to prevent a link from task “don’t make a

pancake” to the task “how to make a pancake”.

In order to create a training dataset, pairs of tasks need to be randomly selected and

manually annotated with information on whether these pairs should be linked or not.

This set of manually annotated task pairs, along with their related features, can then be

used to train a classifier to predict whether two task should be linked or not. However,

careful consideration should be paid when deciding from which distribution to draw

candidate task pairs due to the problem of class imbalance, which will be discussed

next.

6.4.1 The Problem of Class Imbalance

In the HOWDB dataset, if we randomly select pairs of top and bottom level tasks, we

will quickly realise that virtually all of them are pairs which should not be linked to-

gether. As a result of this, it would be prohibitively expensive to manually annotate

a set of randomly selected links which contains a number of linkable pairs of tasks

deemed sufficient for classification purposes. The reason of this problem is class im-

balance.

Class imbalance occurs when entities of a certain class are significantly under-

represented in a dataset, and it is a well known problem in the Machine Learning

community (Japkowicz and Stephen (2002)). For example, class imbalance is com-

mon in fraudulent economical transactions, which arguably occur only in a minority

of cases, but that can be very costly if undetected. While class imbalance can affect

multiclass classification problems, it will be discussed here from the point of view of

binary classification. In a dataset containing datapoints that are either of class 1 (posi-

tive), or class 0 (negative), assuming that 1 is the minority class, we can measure class

imbalance as the ratio of positive datapoints in the whole dataset (Liu et al. (2009)).

For example, a dataset containing 1 positive datapoint for every 10 datapoints has an

imbalance ratio of 1 : 10. While an imbalance ratio of 1 : 2 denotes perfect balance in

a binary classification scenario, the problem of class imbalance increases as this ratio

becomes smaller. The most common danger posed by class imbalance is the tendency

of many ML algorithms to classify all datapoints as the majority class; strategy that

would result in a classification with high accuracy. Approaches to deal with class im-
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balance often attempt to counter this tendency, for example by increasing the penalty

generated by false negatives of the minority class. It is also possible to use training

data where both classes are equally represented, as long as higher weight is given to

the misclassification of data points of the majority class. A review of these types of

approaches is given by Japkowicz and Stephen (2002).

Adding different weights to different classes can help keeping the training data size

requirements within practical limits, but it does not solve all of the problems. In order

to learn how to detect the minority class efficiently, a learning algorithm will need to

discriminate between borderline data points with high precision. In this thesis, border-

line data points belong to a borderline class, defined as a class that is (1) statistically

more similar to the minority class than the majority class, (2) contains a significant

number of data points of the majority class and (3) its size is similar to the size of the

minority class but significantly smaller than the size of the majority class.

Going back to our linking scenario, the space of possible links is typically very

large compared to the specific kinds of links one is interested in. The set of linkable

pairs of entities can therefore be said to be the minority class. In this scenario, one

example of borderline class is the class of pairs of tasks that contain all the words

of the target entity in the source entity. Intuitively, this criteria is not sufficient to

discriminate a positive link from a negative link, as the pair [“if you do not have a job,

apply for a discount”,“apply for a job”] should not be linked, although all the words in

the label of the target task appear in the label of the source task. Since most task pairs

do not have many words in common, we can expect this borderline class to be under-

represented within the majority class. On the other hand, this property is very common

in the minority class, and most of its data points would also belong to the borderline

class. A learning algorithm that utilises a randomly sampled set of data points form

the majority class would then face serious difficulties in detecting borderline cases,

due their relative scarcity in the negative set. Although this scarcity can be overcome

by using a larger training set, the extreme level of class imbalance would make this

approach prohibitively costly. If ignored, this problem can lead to a significant loss

of accuracy as the classifier might learn how to classify the borderline class instead

of the minority class. This can happen if the borderline class is easier to detect than

the minority class, and if not enough data points are present which belong to both the

majority and the borderline classes.

A possible solution to this problem is applying a hierarchical classification system

where the highest level of classification does not filter out borderline cases, filtering
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that happens instead in subsequent classifiers. The links selected by the first classifier

have a very different distribution from the original data, as the positive and borderline

examples are now much more numerous. This set of links can then be used to create a

second training set, which attempts to separate the borderline cases from the minority

class. This approach can be repeated multiple times, resulting in multiple hierarchies

of classification, to obtain a progressively more precise classifier. The main drawback

of such an approach, however, is the necessity to generate a new training set for each

level of classification.

A variant of this approach is possible by substituting the top level of the classifi-

cation hierarchy with a heuristic classifier (Clancey (1985)) if a suitable high accuracy

heuristic is known. Unlike a Machine Learning classifier, a heuristic classifier does

not involve learning and therefore does not require a training dataset. Instead, it uses

a pre-defined algorithm or set of rules to classify data points. In the next section I

will discuss my method for link discovery which adopts this variant of hierarchical

classification.

6.4.2 Hierarchical Classification

The proposed method for discovering decomposition links adopts a hierarchical ap-

proach composed of two filters: a crude and a fine-grained one. The crude and fine-

grained filters are based, respectively, on a heuristic classifier and on a Machine Learn-

ing classifier. Figure 6.1 illustrates how these filters are combined together to solve the

link discovery problem. The main goal of the first filter, the crude one, is to signifi-

cantly reduce the space of all possible links into a subset of more manageable size. A

secondary goal of this filter is to address the problem of borderline classes, by generat-

ing a subset of potential links where a higher ratio of borderline classes is represented.

The proposed type of crude filter is based on efficient text indexing and search

systems. In the first phase, all the labels of the top level and bottom level tasks are

indexed in a text search system. In the second phase, the label of each top level entity

t is used as a search query in a text search system to retrieve the set Bt of bottom level

entities which have the highest label similarity with t. When considering a top level

task with label “how to prepare a resume”, for example, the system might search for

bottom level tasks with a label containing the words “prepare” and “resume”.

A threshold criterion should limit the average size of the sets Bt across all the top

level tasks T to a value n significantly smaller than the set S of bottom level entities
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Figure 6.1: Diagram of the decomposition links discovery processes. The sets of cor-

rect, borderline-incorrect and incorrect link pairs is represented, respectively, with the

colors black, grey and white.

n ăă |S|. This can be done, for example, with a hard limit on the cardinality of Bt , or

by only including in this set elements with a textual similarity above a certain value. A

good threshold criteria should balance the need to reduce the size of Bt while keeping

the number of correct links for t not included in Bt to a minimum.

The set F of all the candidate links between top level entities t and their similar

entities in Bt can then be processed further by the fine grained filter. While the original

set of all possible links had cardinality |T | ˚ |S|, the candidate subset F has the smaller

cardinality n|T |. Moreover, F has different statistical properties than the original set

of all possible links. In particular, links in F have a higher textual similarity. This

property will reduce the risk that a classifier would learn to give too much importance

to text similarity alone, effectively learning how to classify borderline links instead of

the correct ones.

Having obtained the filtered set of candidate links F , it is now possible to manually

annotate a small subset of randomly selected links from F with information on whether

each link should be accepted as correct or not. These annotated links, along with their

computed features, can be used as a training dataset to train a classifier to detect the

correct links in F . Once trained, this classifier is used to filter the final set of correct

decomposition links from F . The manual annotations discussed in this chapter have

been gathered through the work of trained annotators. However, these annotations

could have also been gathered by crowdsourcing. In particular, crowdsourcing could

be used to detect whether particular sub-populations of users have different opinions

on the correctness of the above mentioned links.
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6.5 Implementation and Experiments

A concrete implementation of this method was developed as an integrated set of Java

applications9 along with the DBpedia Lookup Service, the Virtuoso10 triplestore and

the text search engine Apache Lucene.11 The HOWDB dataset was loaded in the Virtu-

oso triplestore, and from there, the textual label of each top and bottom level tasks, their

category, and information on whether they are top or bottom level tasks was extracted

and loaded into a Lucene index.

DBpedia links were generated using the proposed method. The number of matches

returned by the DBpedia Lookup Service were limited to a maximum of 60. This

threshold was empirically chosen after observing that correct matches, if present, tend

to appear very close to the top of the result set. The analysis of requirements made use

of a list of standard labels for units of measure, such as “spoons”, “ml” and “grams”,

which can be easily obtained on the web. Six common adjectives such as “sliced” and

“grated” were also removed from the labels, as they typically do not modify the type

of the ingredient they refer to.

The decomposition links were generated as follows. For each top level task, a

query obtained the set of candidate bottom level tasks containing at least one word

from the label of the top level task, excluding stopwords. Each pair of tasks derived

this way was added to the set of candidate links F . A vector representation of each

pair of links in F , consisting of 34 features, was automatically computed. From this

set, 1000 links were randomly selected and they were annotated as either correct or

wrong by a human annotator. This training data was used to train a Random Forest

classifier using the implementation provided by the WEKA Machine Learning library

(Hall et al. (2009)). The classifier was then applied to all of the links in F to generate

the final set of decomposition links.

6.6 Evaluation

The results of the DBpedia link discovery experiment can be found in Table 6.1. The

precision was manually evaluated separately for the inputs (PI) and the outputs (PO)

on 300 randomly selected links each. This evaluation was performed by a University

student. This student was instructed to classify a link as wrong (1) if it linked an entity

9https://github.com/paolo7/Know-How-Extractor-Linker/ (accessed on 17/10/2017)
10https://virtuoso.openlinksw.com/ (accessed on 17/10/2017)
11http://lucene.apache.org/core/ (accessed on 17/10/2017)
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Inputs Outputs Total

Number of linked entities 255,101 4,467 259,568

Estimated number of correct links 244,896 4,391 249,185

Number of different DBpedia types linked 8,453 3,439 10,166

Precision 96% (PI) 98.3% (PO) 96% (PI`O)

Table 6.1: Results of the DBpedia integration experiment

which was not an input or an output of the process or (2) if the type of the input or

output did not correspond to the linked DBpedia type. The recall measure was not

computed, as the total number of possible DBpedia links is not known. For example,

certain tasks might refer to specific objects not present in DBpedia, while others might

mention multiple objects, and therefore generate multiple DBpedia links. Estimating

the recall of the output links is even harder, as it is not known how many of the 215,959

top level tasks (Table 5.1) involve the creation of an object. However, if we assume that

all of the 530,352 requirements in the HOWDB dataset (Table 5.1) should be associated

with exactly one DBpedia resource, then the correct discovery of 255,101 DBpedia

input links, 96% of which correct, results in a recall of about 46.1% of the input links.

The precision of the decomposition links was computed by the classifier using

10-fold cross validation. The performance of this classifier, listed in Table 6.2, is a

precision of 82.4%. In total, this classifier led to the discovery of 193,701 links.

6.6.1 Comparison with a Human Benchmark

To understand the significance of the results of our integration experiment, we need

to compare them with a relevant benchmark. To the best of the author’s knowledge,

the proposed link discovery system is the first to automate the linking of step-by-step

instructions. Therefore, a direct comparison with a previous equivalent system is not

possible. It is possible, however, to compare it with an existing manual integration

effort that is being performed by the wikiHow community. The members of this com-

munity, in fact, are not only active in the creation and the refinement of individual sets

of instructions, but are also actively creating links between different processes. This

effort can be seen as evidence of the human benefits coming from integrating know-

how. User participation in this linking effort is actively encouraged by wikiHow,12

which does not seem to employ automatic linking systems, an assumption that was

12http://www.wikihow.com/Weave-the-Web-of-Links-on-wikiHow (accessed on 17/10/2017)
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confirmed by asking members of the wikiHow community on the relevant discussion

pages. These community-generated links can be analysed to obtain evidence of the

level of quality that can be deemed sufficient for human use. This analysis will attach

concrete figures to the human quality criteria mentioned in the hypotheses defined in

Section 6.1.

To evaluate the quality of the links generated by the wikiHow community, which

will be referred from now on as WH-C links, the first step was to identify such links

in the original sets of instructions on wikiHow. This extraction was performed by

collecting the linked URLs from the HTML anchor tags within the labels of the entities

of each set of instructions, and by recording those pointing to other wikiHow articles.

According to wikiHow’s policy on external links,13 links to sets of instructions on

external websites are not generally allowed. It is possible therefore to evaluate these

links within wikiHow articles alone. Links between wikiHow articles can be split

into two groups. The first group consists of the links found in the requirements of a

task. These links typically connect a required object to a task that can produce such

an object. As such, they have the same functional role as the I/O links found by the

DBpedia integration. The second group consists of the links found in the steps of a task.

These links connect a step with another task which provides additional information

on how to complete that step. As such, they have the same functional role as the

decomposition links.

Having identified a comparable set of links, three quality metrics for each link type

were computed. These quality metrics are the following:

Precision of the links Correct links should provide relevant information on how to

accomplish a certain task. For example, the proposed system correctly linked

the step “Avoid smoking cigarettes, cigars or pipes around the baby” with the

relevant process “How to Avoid Smoking”. The wikiHow community integra-

tion, instead, linked this step with the irrelevant processes “How to Smoke a

Cigar” and “How to Prevent Frozen Water Pipes”.

Number of links found The recall of a linking system can be said to be higher if it

generates a larger number of links.

Coverage of the links This metric evaluates the number of sets of instructions which

contain at least one link to another set of instructions. The fact that links are
13https://www.wikihow.com/wikiHow:External-Links (accessed on 17/10/2017)
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more evenly spread across different sets of instructions can be considered a sign

of a better integration.

The result of this comparison can be seen in Table 6.2. For each of the two types

of links generated by the wikiHow community (WH-C), the precision was evaluated

manually by the same student that participated in the evaluation described in Section

6.6. I divide these links into two populations WH-CD and WH-CI{O which contain, re-

spectively, all the decomposition links and the the I/O links in dataset of human gener-

ated links WH-C. For each of these populations, the precision measure was computed

by manually evaluating 200 randomly selected links as either correct or incorrect, ac-

cording to the respective interpretation of the links.

I have compared these two populations with populations WH+SD and WH+SI{O,

which contain, respectively, the decomposition links and the I/O links generated by

my integration system. The precision of population WH+SI{O was computed as the

probability that both the input and the output links involved are correct: PI{O “ PI ˚PO.

As such, it can be derived from the precision values shown in Table 6.1. Both PO and

PI were manually evaluated over a set of 300 randomly selected links. The precision of

the population WH+SD, which was generated using a classifier, was evaluated using

10-fold cross validation over a manually evaluated dataset of 1000 randomly selected

links.

I have computed the statistical significance of these measurements using the chi-

squared test, and the differences in precision between the pair of populations WH-CD

and WH+SD, and between the pair WH-CI{O and WH+SI{O, are statistically signifi-

cant. The probability of the null hypothesis, namely that the two pairs of populations

have the same precision, is less than the threshold of 0.05. This difference shows a

higher precision of the links generated by my system compared to the ones created by

the wikiHow community.

It should be noted that the links generated by the wikiHow community only in-

terlink wikiHow instructions. The proposed system, instead, integrates instructions

both from the wikiHow and the Snapguide repositories. To make a fair comparison

of the number of correct links, Table 6.2 also shows the measurements of the links

generated by our system that only connect wikiHow resources (WH). The estimated

number of correct links discovered by my system on the wikiHow dataset is of 88.5K

I/O links (WHI{O) and 104.6K decomposition links (WHD). The estimated number of

correct links created by the wikiHow community is of 2.9K I/O links (WH-CI{O) and

72K decomposition links (WH-CD). Following the methodology discussed in Section
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WH-C WH WH+S

Precision of I/O links 65% 94.3% 94.1%

Number of I/O links 4,560 93,883 183,094

Estimated correct I/O links „2,964 „88,531 „172,291

Coverage of I/O links 3,342 (1.9%) 35,169 (21%) 58,029 (27.4%)

Precision of decomposition links 71% 82.1% 82.4%

Number of decomposition links 101,496 127,468 193,701

Estimated correct decomposition links „72,062 „104,651 „159,609

Coverage of decomposition links 45,250 (27.1%) 69,859 (41.8%) 90,217 (42.6%)

Total precision of the links 70.7% 87.3% 88.1%

Total number of links 106,056 221,351 376,795

Estimated number of correct links „74,981 „193,239 „331,956

Total coverage of the links 45,999 (27.5%) 84,350 (50.4%) 114,166 (53.9%)

Table 6.2: Comparison of the wikiHow community integration (WH-C) with the results

of our integration of wikiHow (WH) and of both wikiHow and Snapguide (WH+S)

3.2.2, the higher number of correct links in populations WHI{O and WHD compared

to, respectively, populations WH-CI{O and WH-CD, can be seen as evidence of higher

levels of recall in the populations generated by my system.

6.7 Discussion of the Results

The result of this evaluation shows how the proposed method for link discovery gen-

erates both PROHOW decomposition relations and input/output relations within a PRO-

HOW instructional dataset with higher precision than the existing human benchmark.

An exact measure of recall could not be computed due to the lack of a practical ap-

proach to determine the total number of correct links that should be discovered. How-

ever, it is possible to perform a relative measurement of recall between multiple popu-

lations under the assumption that the total number of correct links is equal across the

populations. Given that this assumption is true in my experiments, and that I discov-

ered a higher number of correct links than the ones found in the human benchmark, I

can conclude that the proposed system generated links with higher recall (as discussed

in Section 3.2.2).

Given that the set of all the possible correct links is not known, it is also not pos-

sible to carefully determine if there is any particular category of links that my system
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systematically fails to detect. However, we can consider that my system strongly relies

on string similarity. Therefore, one could expect lower levels of recall across popula-

tions of links that connect entities that are semantically related, but that are described

using very different natural language expressions.

Having shown higher precision and recall for both types of links, the experiments

can be said to validate Hypotheses 4 and 6. On the other hand, Hypothesis 5 cannot be

validated directly, as an existing benchmark of direct links to DBpedia (or equivalently

Wikipedia) resources was not found. It can be observed, however, that the precision of

the discovered DBpedia links is higher than the precision of the other types of human

generated links. Moreover, the quality of the I/O links, evaluated as being higher than

the human benchmark, is a direct result of the quality of the DBpedia links. Therefore,

these observations can be taken as evidence suggesting the validity of Hypothesis 5.

6.8 5-Star Open Data

After interlinking a PROHOW dataset with other datasets, it is possible to publish it on

the web to allow other people and organisations to use it or to link to it. Publishing this

type of data not only brings benefits to those that want to use it, but also to those that

publish the dataset. The value of a dataset, in fact, can be considered to increase if it

is used by external applications, or if it is linked to from other datasets. The DBpedia

links described in this chapter not only result in the discovery of I/O relations between

tasks, but they also enrich the DBpedia dataset, making it possible to discover, for

example, of which resources are often used together in instructions.

The term open data refers to data in an open form, which can be both obtained from

the web and used freely.14 This term is associated with a movement that promotes the

practice of publishing open data, with the objective of unlocking data’s full potential

by making its use easier and less restricted. This movement counters the opposite trend

of closing or restricting access to datasets, often implemented by private companies to

maintain the economic or competitive advantage of having exclusive access to the data.

Hypothesis 7 can be validated by showing that HOWDB, the dataset generated by

the proposed knowledge extraction and interlinking method, would qualify for all of

the five stars of the 5-Star Open Data ranking system if it was published on the web

under an open licence. The HOWDB dataset is, in fact, published online15, but under

14http://opendefinition.org/od/2.1/en/ (accessed on 17/10/2017)
15https://w3id.org/knowhow/dataset (accessed on 17/10/2017)
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a licence16 which allows anyone to copy, use, modify and redistribute the data for

non-commercial purposes only. Having to restrict its use only for non-commercial

purposes is a result of the terms of use of the wikiHow and Snapguide websites, which

do not allow their data to be used for commercial purposes. Therefore, the inability of

publishing the HOWDB dataset under an open licence is not considered a flaw of the

method, but only a result of a particular choice of the original data sources.

Following the methodology outlined in Section 3.2.3, I validate Hypothesis 7 by

demonstrating compliance of each star of the 5-Star Open Data ranking system. The

reasons why each star should be awarded are the following:

• The first star is awarded for publishing data on the Web under an open licence.

This criteria is met as it is part of the assumptions behind the formulated hypoth-

esis.

• The second star is awarded for making the data available as structured data. This

criteria is met by having the data represented in the structured RDF data model.

• The third star is awarded for making the data available in a non-proprietary open

format. This criteria is met by publishing the data in the Turtle format (Carothers

and Prud’hommeaux 2014), which is open and non-proprietary.

• The fourth star is awarded by using URIs to denote concepts. This criteria is met

because, with the exception of the literal values such as dates and strings of text,

every entity and relation in the dataset is represented with a URI.

• The fifth star is awarded by linking the data to other datasets and thus provide

context. This criterion, which is expressed in vague terms, needs to be formu-

lated into a more precise one before it can be evaluated. In Section 3.2.3 I have

argued that a sufficient criterion for the fifth star to be awarded to an instructional

dataset is the presence of a number of links to DBpedia concepts greater than the

number of sets of instructions. Having discovered 249,185 links to DBpedia

(Table 6.1), across 211,128 sets of instructions (Table 5.1), I consider that there

exists sufficient evidence for the fifth star to be awarded.

Having validated Hypothesis 7, it can be said that the data integration system de-

scribed in this chapter complements the data extraction method described in the pre-

vious chapter in providing a complete method to generate 5-star Open Data resources

16https://creativecommons.org/licenses/by-nc-sa/4.0/ (accessed on 17/10/2017)
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from instructional web-pages. The only parts of this process that have not been de-

scribed in detail are the ones pertaining the first star of the ranking system, namely

how to publish data online under an open licence. This step is not described as it can

be considered trivial and implementation-specific. A large number of data hosting so-

lutions exist, and pre-made open licences, such as those distributed by the Open Data

Commons,17 are also readily available.

6.9 Conclusion

In this chapter I have presented a prototype of a link discovery system for instruc-

tional data, along with insights on how it can be built and the challenges that need

to be addressed to do so. I have evaluated this method in a real-world scenario and

demonstrated that it is possible to generate procedural links that significantly outper-

form manual community-based integration efforts. The proposed method should not

be interpreted, however, as an optimal strategy for procedural link discovery, and many

improvements can be made to generate a faster and more precise system.

For example, this method was further analysed by Chernov et al. (2016) in an

independent stream of work. Chernov et al. validated the hypothesis that when linking

instructional text, imperative verb phrases (or actionable phrases) are highly relevant.

The approach that considered actionable phrases discovered 60% more links than the

one that considered whole step sentences, and with higher precision. A difference from

the experiments presented in this chapter, however, is that their evaluation was limited

to the Computer and Electronics domain of the wikiHow website, which was analysed

with a domain-specific algorithm that exploited knowledge of the terminology of that

domain.

The work presented in this chapter complements the work presented in Chapters

4 and 5 in providing a complete method to acquire, formalise, interlink and publish

instructional knowledge on the web. This combined method is a possible solution to

the know-how representation and know-how acquisition problems discussed in this

thesis.

17https://opendatacommons.org/licenses/ (accessed on 17/10/2017)
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Know-How Applications

Chapters 4, 5 and 6 describe, respectively, how instructional knowledge can be for-

malised; how it can be extracted from existing documents; and how it can be integrated

with related data. The main goal of the whole process is to enable useful applications

by generating instructional data which is ‘more’ machine-understandable. In this the-

sis, the level of machine understanding of a dataset is seen as a measurement of the

number and complexity of the applications that we can expect a machine to implement

given the dataset. An application can be said to be more complex than another if it

allows a user to achieve a certain goal with a higher level of automation. Moreover,

it can be said that a machine is expected to implement a certain application if there is

a known method for developing such an implementation, or in other words, if it can

be considered an engineering endeavour instead of a research project. These defini-

tions are admittedly vague, as they depend on the informal concepts of complexity and

expectation. Nevertheless, it captures the intuition that evidence of higher machine

understandability of a formalisation can be provided by showing how it enables higher

automation of certain goals which cannot be expected by data in the previous existing

forms.

Given an HTML web page containing a description of a set of instructions, we can

expect a machine to assist a user in a number of simple applications, which include dis-

playing its content in a human-readable way, and retrieving additional documents by

following the HTML links present in the document. If a user is interested in discovering

further information about a set of instructions, in executing them, or in collaborating

with other users, there is not significantly more automatic support that we can cur-

rently expect users to receive. The main goal of this chapter is to provide evidence

that the proposed formalisation of instructions, the PROHOW model, is more machine-

148
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Figure 7.1: Overview of this chapter. The green check-mark denotes applications that

I have implemented, and the grey starred check-mark denotes a conceptual framework

that I have designed.

understandable. To do so, this chapter will describe two applications that cannot be

efficiently implemented with the current HTML representation of instructions, but that

are easily implementable using PROHOW data. These applications are derived from the

ones that were considered in Section 4.7.3 during the formalisation of the competency

questions of the model, namely know-how exploration and know-how execution. The

first application that I will discuss is the use of instructional resources to support the

exploration of instructional information by a user. The second application that will

be considered is the use of instructional resources to support the execution of a set of

instructions.

An overview of this chapter is given in Figure 7.1. I will present each application

in two different scenarios, namely a centralised and a decentralised one. While cen-

tralised applications can reach high levels of efficiency, they also require a high-cost

concentration of data and computational resources. I will present a decentralised ver-

sion of these applications to demonstrate how PROHOW data can be stored on the web

in a decentralised fashion while still supporting know-how exploration and execution.

In other words, existing instructional resources on the web, which are to a large extent

decentralised, can benefit from being formalised using the PROHOW model without

requiring centralisation.
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7.1 Know-How Exploration

The main use of instructions is to provide know-how to a user, or in other words,

communicating information about how a task can be executed. A user interested in

know-how might have various exploration goals, such as discovering the sub-tasks of

a given task, discovering its requirements or comparing alternative ways to complete

the same task.

7.1.1 Problem Description

I formulate the generic hypothesis that the PROHOW model allows users to reach sev-

eral know-how exploration goals more efficiently than using the current representation

of instructions as HTML documents. In this hypothesis, I am assuming the availability

of PROHOW data derived from such documents. For each of these goals, the following

more specific hypothesis will be considered:

Hypothesis 8. The given know-how exploration goal can be achieved more efficiently

using PROHOW instructional data compared to using the original HTML representa-

tions of instructions.

The notions of efficiency and of exploration goals used in this section are the ones

introduced in Section 3.3.1. The original representation of instructions refers to the

web documents from which the PROHOW data was extracted from. The type of in-

structional web documents that I am considering are typical HTML representations of

textual instructions, such as the ones available on the websites listed in Table 4.1 in

Chapter 4.

It should be noted that all the features of the PROHOW model could, in theory, be

reproduced without using the PROHOW vocabulary or RDF data. For example, all of the

user interfaces that will be presented in this section could be reproduced by dynamic

HTML pages generated from a relational database. In this scenario, however, it could be

argued that the relational database is simply an alternative instantiation of the PROHOW

model, or a model with equivalent expressiveness. The choice of using a Linked Data

approach based on an RDF data model and URI identifiers is mostly a matter of prac-

ticality, as these standards are specifically designed to facilitate the integration of web

data. Different equivalent representations are possible, although arguably their imple-

mentation would be impractical. In fact, many solutions already offered by Linked
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Figure 7.2: Architecture of the HowLinks tool.

Data technologies, such as universal identifiers, a common data model and shared vo-

cabularies, would most likely need to be re-invented. Therefore, Hypothesis 8 should

not be interpreted as a statement about the limitations of non-RDF resources, but as a

statement about the benefits of having a richer structured representation that captures

the semantic relations of the PROHOW model.

7.1.2 Experiments: the HowLinks Exploration Tool

In order to experimentally validate the formulated hypothesis for a number of explo-

ration goals, a concrete know-how exploration tool called HowLinks was created. This

tool has been developed by the author in collaboration with Benoit Testu at the National

Informatics Institute in Tokyo, Japan.1 HowLinks is a service implemented in PHP and

Javascript that offers an integrated visualisation in a web browser of PROHOW and DB-

pedia data accessed through SPARQL endpoints. The source code for this application

has been published on GitHub.2

The architecture of the HowLinks tool is summarised in Figure 7.2. A Javascript

client displays HTML pages to the users by retrieving data from a PHP server-side

script. The server-side script answers to the requests of the client by collecting data

1http://ri-www.nii.ac.jp/HowLinks/index.html (accessed on 17/10/2017)
2https://github.com/paolo7/howlinks (accessed on 17/10/2017)
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Figure 7.3: Screenshot of the HowLinks web application.

from a number of SPARQL endpoints. Each instance of HowLinks is configured with

up to two SPARQL endpoints: an endpoint exposing a PROHOW dataset and an optional

endpoint exposing a DBpedia dataset. Know-how exploration in HowLinks starts with

a keyword search. The keywords used in the search are transformed into a SPARQL

query that retrieves the URIs of the tasks that contain such keywords in their label. To

limit the amount of results to the most meaningful ones, this search is not performed

over all tasks, but only over the top-level tasks of each set of instructions. The labels

of the tasks returned by the query are displayed to the user in a list, and he or she can

then select one of them to begin the exploration.

Once the user has selected a specific task, queries are performed to retrieve infor-

mation about that task. More specifically a set of queries returns information about (1)

its steps, (2) its methods, (3) its outputs, (4) its requirements, (5) its related DBpedia

information and (6) the tasks that require such object if it represents the output object

of a process. With the exception of DBpedia information, all the other pieces of in-

formation are information about tasks. These tasks are displayed in a tree structure as

children nodes of the original task, and if they are above a certain number, they are

grouped together into a single node. Each node in this tree structure represents a task

or a collection of tasks, and is colour-coded depending on its relation with its parent

node. For example, steps are represented with the colour orange while requirements

with the colour green. Each node representing a collection of tasks can be expanded

into its members. Each task node displays the label of the task. Moreover, if the task

involves obtaining or producing an object associated with a DBpedia resource type,

the picture of that type obtained from DBpedia will also be displayed. Clicking on a

node will expand it with its children.
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Figure 7.3 displays a partial screenshot of the visual output of HowLinks. In this

figure, a user has expanded information on how to “Prepare a Coffee Parfait” after

discovering this task using the keywords “coffee” and “parfait”. The top level node of

the tree represents this task, and its children can be expanded to discover its steps or

its requirements. In this figure, the user has expanded its 6 requirements, 4 of which

are linked to DBpedia types and therefore include a picture retrieved from DBpedia.

Finally, the user has expanded the requirement “Coffee” and discovered the task “How

to Make Coffee” which can be used to generate such requirement. The user could now

expand this task to discover more information on how to make coffee, or he or she

could continue the exploration by clicking on other nodes.

7.1.3 Evaluation of Know-How Exploration Goals

I will now formulate a number of exploration goals that the HowLinks tool enables

users to achieve efficiently using the PROHOW representation of instructions. They will

be compared with the wikiHow and Snapguide websites3 to evaluate to what extent the

same goals can be achieved on these websites. Following the methodology described

in Section 3.3.1, I will evaluate the efficiency of achieving a goal based on the set

of actions necessary to achieve it. The four types of actions I will consider are the

following:

Click A click (shortened as c) is an action achieved by a user by clicking an element

of the interface.

Page Scroll A page scroll (shortened as ps) is an action achieved by a user by scrolling

through a list of elements across one or multiple pages.

Web Search A web search (shortened as ws) is an action achieved by a user by re-

trieving a resources that describes an object using a search engine.

Complete Instructional Search A complete instructional search (shortened as cis)

is an action achieved by a user by searching through all of the sets of instructions

in a repository to look for specific types of information.

Given the impracticality of performing a cis, a system that requires it to achieve a goal

is always considered less efficient than one that does not require it.

3The version of these websites available in April 2017.



Chapter 7. Know-How Applications 154

Know-How Exploration Goal wikiHow Snapguide HowLinks KnowHow4j

Output Process Discovery c / cis c + ps c cis

Common Input Discovery cis c + ps c cis

Decomposition Discovery c / cis cis c c

Integrated View Discovery np np c c

Related Factual Knowledge Discovery c + ws c + ws c c + ws

Table 7.1: The actions required by different systems to achieve the five exploration

goals. A goal which is not achievable by a system is labelled np. The plus symbol `

denotes that both actions are necessary, while the slash symbol / denotes that one of

the two actions is necessary.

The five exploration goals that will be considered are listed in Table 7.1. This table

compares HowLinks to wikiHow and Snapguide with respect to the level of support

of these goals. This table also includes the level of support of these goals by the

KnowHow4j tool, introduced in Section 5.6. The decentralised know-how exploration

functionality offered by KnowHow4j will be discussed later in Section 7.2.

Output Process and Common Input Discovery Goals

By expanding a requirement task of a process in HowLinks with a single click (c),

a user can achieve the two exploration goals, namely output process discovery and

common input discovery. The output process discovery involves discovering how a

requirement of a set of instructions can be obtained. Arguably, this goal is of interest

to many users, such as those which do not already posses a requirement, and might

consider how difficult it would be to create it. For example, a user inspecting a set of

instructions that require the ingredient “Pancake” might be interested in discovering

the output process “How to Make a Pancake”.

The common input discovery goal involves discovering other tasks that require the

same type of input. Discovering other tasks that can be accomplished with a certain

input has many uses, such as estimating the usefulness of a tool, or discovering more

recipes that contain the user’s favourite ingredient. For example, a user that wants to

use the ingredient “chocolate” might be interested in finding other sets of instructions

that require this ingredient, such as “How to Make a Chocolate Cake”.

In wikiHow, requirements of a set of instructions can be linked to at most one set



Chapter 7. Know-How Applications 155

of instructions that explains how to obtain them.4 If only one such set of instructions

exists, then it can be accessed with a single click (c). However, if multiple such sets

of instructions exist, a complete instructional search (cis) would be required to find

them. Moreover, wikiHow does not support the common input discovery process, as

the only way to discover other sets of instructions that involve the same requirement is

through a complete instructional search (cis).

In Snapguide, requirements of a set of instructions are linked to a page that lists

other sets of instructions that either require or produce objects of the same type.5 These

two different types of sets of instructions are mixed together. Therefore, a user that is

only interested in one of the two types, needs to first access this page (c), and then to

scroll through the list of results to find the ones he or she is interested in (ps).

Decomposition Discovery Goals

This decomposition discovery goal involves discovering tasks that can be used to de-

compose a step. This is a common goal, as tasks are often not described in details, and

certain users might need to gather more information about a task from external sources

in order to properly understand it. Using the HowLinks tool, a user can achieve this

goal by expanding the steps of a process with a single click (c).

In wikiHow, the HTML description of steps can contain a link to another set of

instructions that explains how to achieve that step or part of it. This link is located in the

textual part of the label of the task that describes the part that is related to the external

set of instructions. For example, the words “prepare a pancake” in the label of a step:

“Next, prepare a pancake for every guest” could contain an HTML link to the set of

instructions on “How to Make a Pancake”. This approach, however, can only represent

one such link for every textual component of the task, and multiple relevant tasks,

such as multiple pancake recipes, cannot be linked. Therefore wikiHow allows the

discovery of one possible decomposition with one click (c), while a complete search

might be necessary to discover alternative decompositions (cis).

In Snapguide, similar decomposition links to the ones available in wikiHow would

be possible, but none was found. Therefore, a complete instructional search is required

to achieve the decomposition discovery goal (cis). Overall, representing decomposi-

tion links as HTML links within the text of a task limits the number of decomposition

tasks that it is possible to link to. While it is true that multiple links for the same com-

4For example: https://www.wikihow.com/Fondant-a-Cake, accessed on 14/04/2017.
5For example: https://snapguide.com/supplies/fondant/, accessed on 14/04/2017.
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ponent could be represented using other HTML structures, such as in a list, or in a pop-

up display, adding such structures can be considered as imitating certain HowLinks

functionalities.

Integrated View Discovery Goals

Users might also be interested in visualising sets of instructions on the same page to

see how they relate with each other. For example, a user following a cooking recipe

on how to make a pancake might want to expand the step “prepare pancake mix” with

its sub-steps, as described in another set of instructions, without having to navigate to

a different page. This objective can be called the integrated view discovery goal.

In wikiHow and Snapguide, sets of instructions can only be visualised as a whole

and there is no option for combining related ones. This goal is achievable by HowLinks,

which is designed to provide an integrated visualisation of multiple sets of instructions,

or relevant subsets of them. In fact, by clicking on a component of a set of instructions

(c) information about this component is displayed in the same interface, regardless of

which set of instructions it was originally part of. Achieving this goal is a direct result

of an advantage of using a structured representation of instructions. In a similar way as

in a modelviewcontroller architecture, the PROHOW representation of know-how is de-

coupled from the visual environment where it is presented to the users. In this scenario,

a simple set of display rules could be sufficient to visualise any set of tasks originating

from different sets of instructions.

Related Factual Knowledge Discovery

Users that are not only interested in know-how but also in related factual knowledge

can be said to pursue a related factual knowledge discovery goal. For example, a user

looking at a recipe involving an exotic ingredient might be interested in discovering

what this ingredient is. To the best of the author’s knowledge, wikiHow and Snapguide

do not support this goal. Using these websites, a user would need to click on a different

interface (c) and then perform a web search (ws) in order to discover more information

on a requirement.

HowLinks, on the other hand, allows users to discover information from DBpedia

related to the task at hand. In its current implementation, HowLinks displays a picture

taken from DBpedia to complement the textual description of a task with a visualisa-

tion of its type. Given that the URI of the related DBpedia resource is known, it would
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also be trivial to display additional information, such as a textual description, if the

user clicks on the picture (c).

7.1.4 Discussion

In this section I have presented five know-how exploration goals and discussed how

efficiently they can be achieved using the HowLinks tool instead of the wikiHow and

Snapguide websites. The results of the analysis presented in Table 7.1 show that users

using HowLinks can achieve all the exploration goals by performing one click. Achiev-

ing the same goals using the other wikiHow and Snapguide websites, however, is ei-

ther less efficient or not possible at all. This can be taken as evidence that Hypothesis

8 holds true for the five goals that have been considered. This result can be attributed

to a number of advantages brought by the PROHOW formalisation.

As discussed before, one of the main advantages of PROHOW, and of many struc-

tured representations, is decoupling information from its visual representation. This

decoupling also allows for RDF links between entities to be discoverable regardless

of their directionality once they are stored in a single database. I use the term RDF

link to refer to edge of the directed labelled graph interpretation of an RDF dataset.

HTML links, on the other hand, can only be traversed in one direction. An HTML link

between resource A and resource B allows the discovery of B from A but not A from

B. HTML links can be made to link two resources bi-directionally by providing a link

from each resource to the other one, though this requires link duplication. Instructional

websites often contain links between a step and instructions on how to accomplish it.

The reverse links, however, are typically not present as they would be expensive to

maintain.

Moreover, the cost of representing many-to-many relations between documents

using HTML links grows exponentially. For example, an instructional dataset might

contain 10 recipes to prepare pancake batter that can be used by 10 instructions on

how to prepare pancakes. If we want to represent all the I/O links between these

instructions we will need 100 HTML links. In the PROHOW model instead, the entity

representing the common object type, in this case “pancake batter”, acts like a central

node to which the I/O links are directed to and from. The I/O links of this example,

therefore, can be represented using only 20 RDF links.

Finally, RDF links are labelled, and are therefore more informative than HTML

links. This allows systems using PROHOW data to filter the set of resources related to
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a certain task based on the type of relation that a user is interested in. For example, it

is known whether a resource B linked to resource A provides information on how to

achieve A, or about what type of object A produces.

7.2 Decentralised Know-How Exploration

The knowledge exploration tool described in the previous section, HowLinks, demon-

strates how it is possible to provide an integrated visualisation of a large dataset of

PROHOW instructions. The main drawback of this tool, however, is the necessity to

store a large amount of RDF data within a single repository. This can be considered a

major disadvantage compared to HTML instructions, which can be created and inter-

linked by any web user with relatively little cost. Although centralised instructional

repositories such as wikiHow and Snapguide are common, any web user has the pos-

sibility of creating an independent set of instructions, hosting it on a different website,

and then linking it to a set of instructions in a centralised repository. A structured rep-

resentation of instructions should offer to the users “the best of both worlds”, and not

restrict the users’ ability to create and use knowledge. The goal of this section is to

demonstrate how PROHOW data can be created and used in a decentralised fashion in

the context of know-how exploration. I formulate this goal as the following hypothesis:

Hypothesis 9. The PROHOW representation of instructions embedded in RDFa in de-

centralised HTML pages can be integrated and explored on-demand if a URI naming

convention is used. In particular, this naming convention should enable the discovery

of the URI of the main task described by the set of instructions from the URL of where

the HTML page is stored.

7.2.1 Problem Description

In Section 5.6 I presented the editor functionality of the KnowHow4j6 tool, a Javascript

tool that I developed to generate and visualise PROHOW representations of instructions

using RDFa. The editor functionality of this tool allows the user to define PROHOW

instructions as a set of steps, methods and requirements. The resulting PROHOW data

is translated into an HTML code snippet containing both the human-readable set of

instructions in plain HTML and the machine readable PROHOW data in the RDFa format.

6https://github.com/paolo7/khjsdevelop (accessed on 17/10/2017)
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While this approach can easily be used to publish isolated, PROHOW-embedded,

web documents, allowing explorable RDF links between them requires additional con-

sideration. More specifically, when creating a new set of instructions A that describes

a set of tasks T , two problems arise. The first problem arises when trying to link a

step t P T to a task x described in a separate set of instructions B. This problem is the

discovery of the URI of x. Without knowledge of the URIs of both t and x, a link be-

tween them cannot be established in RDF. The second problem arises when exploring

the know-how contained in A. This problem is the discovery of the related PROHOW

resources in B. Without gaining access to the external set of instructions B, it is not

possible to exploit the available knowledge of task x.

As an example scenario, we can imagine a user creating a set of instructions about

task a: “How to prepare a pancake” which involves the step b: “Prepare the pancake

mix” that he or she would like to link to an external set of instructions about task

c: “How to prepare a pancake mix”. While the user might not know the URIs of all

the entities in each set of instructions, I assume that he or she knows the URL of the

external set of instructions describing task c. A possible method to solve this problem

will be presented in the following section.

7.2.2 A Method for Decentralised Know-How Exploration

I will now present a method to solve the two main problems of decentralised know-

how exploration. Following the methodology presented in Section 3.3.2, I define the

three necessary requirements of this method:

RDFa embedded HTML pages This method assumes that web resources describing

instructions are represented as HTML pages embedded with RDF data using RDFa

annotations.

PROHOW annotations of instructions This method assumes that instructions are ac-

companied by RDF data that uses the PROHOW vocabulary to describe the in-

structions.

A URI naming convention A naming convention is used to allow a system to infer the

URI of the top-level task described in a resource from its URL. This convention

will be described in more details in Section 7.2.2.1.

In Section 7.2.2.2 I will propose a method to dynamically discover and integrate
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Figure 7.4: Schema of the HTML and RDF links in resources generated by the

KnowHow4j tool.

resources that follows the above mentioned requirements using dynamic RDF discov-

ery.

7.2.2.1 URI Naming Convention

The first problem that I will address is the discovery of the URI of the task to link to.

Since URLs are a type of URIs, a user interested in creating a link to an external set

of instructions can be assumed to know at least one URI associated with this set of

instructions. This URI refers to the page that contains the instructions and it would not

be semantically correct to re-use the same URI to denote one of the tasks it describes.

Instead, I propose a standard convention to denote the top level task defined in the set

of instructions. The top-level task, as previously defined in Section 6.4, is the main task

that the set of instructions describe. The top level task can be identified by appending

a fragment identifier7 to the URI of the page that describes it. A fragment identifier is a

7https://tools.ietf.org/html/rfc3986#section-3.5 (accessed on 17/10/2017)
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short string of characters starting with the hash symbol “#”. Fragment identifiers are an

optional part of a URL that do not change the resource that the URL points to. In Linked

Data, it is a standard practice to use fragment identifiers to create multiple URIs, called

hash URIs, that can be used to retrieve the same web resource while having a different

URI from it (Heath et al. 2011).

This method is currently used only to identify the top level task of a set of in-

structions. Although it would be possible to create other conventions to identify other

components of an external set of instructions, such as “the first step”, there is no guar-

antee that such components exist. The only component that it is assumed to be present

in any set of instructions is the top level task. As presented in Section 6.4, top level

tasks can be linked to bottom level tasks to create decomposition links across sets of

instructions.

The URL of the resource containing the set of instructions does not need to be

specified in advance, as in RDFa it is possible to use relative URLs. When retrieving a

web resource, relative URLs are automatically instantiated with the base URL of their

context. Unless special configurations are used, the base URL typically refers to the

URL of the web resource that is being requested by a client, and it is prefixed to the

relative URLs. For example, the relative URL #task found in a web resource with URL

http://example.com would be instantiated as http://example.com#task.

The advantage of using relative URLs compared to absolute ones is that the user

does not need to specify in advance where a resource will be published. Moreover,

the same document can be moved to a different URL without the need to change its

underlying RDFa data. The main disadvantage, however, is that by moving the location

of this document its internal URIs will also change. This means that if an external

dataset contained a link to one of these URIs, after the resource is moved this URI

might no longer be valid. Although using absolute URLs guarantee the permanence of

the URIs used in RDFa, this is not always an advantage. In fact, it will be discussed

next how maintaining an absolute URI after moving the web resource that describes it

can create problems in dynamic RDF discovery.

7.2.2.2 Dynamic RDF Discovery

Having established a convention for identifying the URI of the top level task of an exter-

nal set of instructions, the remaining problem is how to retrieve additional information

about this task. This problem can be considered already solved by having the the URI

of the top level task also function as a URL capable of retrieving information about the
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task. The URI of a top level task defined using this method, in fact, points by default

to the web resource that contains its PROHOW description embedded in RDFa. When

information about a task x is sought, it is possible to dereference this URI and retrieve

RDF data stored at this URL. If the resource retrieved is an HTML page, its contents

will be parsed to extract the embedded RDFa data. The data extracted is then added to

the local RDF dataset stored in memory, which can be later visualised. This method is

also compatible with RDF formats other than RDFa, such as Turtle and RDF/XML.

The type of URIs described in this section can be considered HTTP URIs, namely

URIs that point to web resources retrievable through the HTTP protocol. Since the web

resources retrieved by one such HTTP URI contains an RDF description of this URI

along with other HTTP URIs, this data can be said to be following the Linked Data

principles. The interlinked RDF resources generated by this method can be considered

a type of Linked Data and their exploration as dynamic Linked Data discovery. In the

example presented in Figure 7.4, both URL :Y and URI :Y#main point to the same web

resource. Therefore, resource :Y is discoverable from resource :X both by following

an HTML link and by performing dynamic Linked Data discovery.

It should be noted that this method for generating and retrieving RDF resources

dynamically is best suited for resources with a static location. If the resource contain-

ing the PROHOW representation of a task is relocated to a different URL, its URI will

change and all of the external occurrences of its previous URI should be updated ac-

cordingly. This is an inherent problem of URL resources and HTML links are subject

to the similar risk of “breaking” if the resource they point to is relocated. If there is a

high risk that a resource will need to be moved, a possible solution to this problem is

to use URL redirection systems such as Persistent Uniform Resource Locators (Weibel

et al. 1996).

7.2.3 Experiments: The KnowHow4j Exploration Tool for Decen-

tralised Resources

I have developed an implementation of this method as part of the KnowHow4j tool,

using the rdflib.js8 Javascript library to parse and query RDF resources such as RDFa

embedded HTML files and Turtle data files. The specific URI naming convention used

by the KnowHow4j tool is to append the text fragment #main to the end of a URL of a

web page to generate the URI of its top-level task.

8https://github.com/linkeddata/rdflib.js/ (accessed on 17/10/2017)
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In the KnowHow4j editor, users can specify any number of links to external web

pages from any component of the set of instructions. These links are further described

as one of three PROHOW relations, namely prohow:requires, a prohow:has_step

or a prohow:has_method link. To specify this information, users need to write one

of the keywords: “requirement”’, “step” or “method”, and the URL to link to, within

square brackets at the end of the description of a component. When parsing this set of

instructions, the KnowHow4j editor will automatically add the fragment #main to the

end of the linked URLs.

Similarly, when creating a set of instructions, the KnowHow4j editor will create the

URI of the top-level task by appending the fragment #main to the URL of the document

where the HTML code will be published. Figure 7.4 illustrates the main components

of two interlinked sets of instructions generated with the KnowHow4j editor. These

resources are published on the web at URLs :X and :Y and the top level task described

in these resources is identified, respectively, with URIs :X#main and :Y#main.

The KnowHow4j tool includes a visualisation functionality. This functionality is

accessed by opening its HTML interface on a web browser. From this interface, a user

can start exploring PROHOW resources by providing the URL of a resource containing

PROHOW data. As mentioned before, this resource could be dereferenced into an RDFa

embedded HTML page or more generally, any serialisation of an RDF data file.

After providing the initial URI of a task, KnowHow4j will attempt to interpret the

URI as a URL and retrieve the resource it points to. If successful, the resource will be

parsed and all the discovered RDF will be loaded in memory locally. If a PROHOW

description of the task is found, it will be displayed graphically as an expandable tree

in an equivalent fashion to the one described before for the HowLinks tool.

The main difference between the KnowHow4j and HowLinks visualisation tools is

the effect of expanding the nodes of the graphical tree representation. In KnowHow4j,

expanding a node in the tree that represents an entity with a certain URI results in

an attempt to retrieve more RDF data dynamically from this URI. If successful, this

additional data will be added to the local dataset stored in memory and it will be used

to display more information about the expanded task.

7.2.4 Discussion

I have proposed a method to automatically explore and integrate distributed instruc-

tional resources if they fulfil the three requirements listed in Section 7.2.2. I have tested
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this method empirically by developing a prototype: the KnowHow4j application. This

application and a detailed tutorial on how to replicate the discussed functionalities is

available on the tool’s GitHub’s page.9 As listed in Table 7.1, KnowHow4j allows

a user to achieve two of the exploration goals defined for the HowLinks application

in Section 7.1.3, namely decomposition discovery and the integrated view discovery

goals. The decomposition discovery is achieved by clicking on a task to expand it into

its sub-tasks. This goal is achievable under the assumption that a link between a bot-

tom level task x and a top level task y is stored in the same resource that describes x.

By dynamically retrieving and integrating information coming from different sets of

instructions, this tool also achieves the integrated view discovery goal.

The decentralisation approach taken by KnowHow4j also results in certain draw-

backs. Decentralised resources need to be discovered and retrieved before they can be

used, for example in a visualisation. The approach used by KnowHow4j to discover

decentralised resources from an initial RDF dataset results in three constraints. The

first constraint is that URIs are not simply used as semantic identifiers, but they also

need to function as URLs pointing to a relevant web resource.

The second constraint is that the RDF statements contained in decentralised re-

sources need to enable exploration. In other words, if a resource B needs to be dis-

coverable from a resource A, then a URI that points to B needs to be found in A. The

directionality of resource discovery results in the fact that although two resources A

and B are related, only one of them might enable the discovery of the other. It is possi-

ble, therefore, that related information exists but it cannot be discovered. This is not a

problem in the centralised HowLinks applications because all of the relevant datasets

are assumed to be known.

The third and last constraint is that instructional documents need to follow a set of

publication conventions, such as publishing documents with embedded RDFa data, and

following certain URI naming conventions. This can be considered as a more restrictive

publication approach than the one currently used in practice, as real-world instructional

articles can be published without having to follow specific conventions. However, I

argue that this is not a severe limitation, as compliance with the required publication

conventions can be ensured by using simple editing tools, such as KnowHow4j.

This application demonstrates it is possible to navigate a decentralised network of

human and machine-understandable instructional resources, thus validating Hypothe-

sis 9. The exploration of this network does not require, in theory, any server-side func-

9https://github.com/paolo7/khjsdevelop (accessed on 17/10/2017)
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tionalities or any specialised software other than a modern web browser. In practice,

however, modern web browsers do not allow scripts to dynamically access resources

from different domains under the same-origin policy.10 Different ways to circumvent

this policy exist, and the KnowHow4j tool uses one such approach that relies on a

proxy service.

7.3 Know-How Execution

Having discussed ways to enhance the exploration of instructional resources, I will

now focus on ways to support their execution. With an increase in the capabilities

of artificial systems, the number of everyday tasks that involve a mixture of human

actions and machine computation is also increasing. In this section I investigate the

extent to which the PROHOW formalisation of instructions allows machines to support

the human execution of those instructions. I will present the first framework that allows

non-programmers to create and execute workflows where each task can be completed

by a human or a machine. In this framework, the PROHOW dataset represents a shared

knowledge base that humans and machines use to interact with each other. The hy-

pothesis that will be considered is that non-programmers can describe how to achieve

certain tasks at a level of abstraction which is both human and machine-understandable.

Going back to the initial goal mentioned at the beginning of this chapter, I will provide

evidence of an increased level of machine understanding of a task by automating cer-

tain steps of the task that were initially intended to be executed manually. The contents

of this section have been published as a conference paper (Pareti et al. 2016).

7.3.1 Introduction to the Human-Machine Collaboration Scenario

This section addresses the problem of enabling non programmers to specify the type

of behaviour they require from machines, as opposed to being constrained by their

pre-defined functionalities. Applications such as IFTTT11 (If-This-Then-That) have

demonstrated that, given the right tools, users are capable of composing different com-

ponents, such as triggers and actions, to program certain desired behaviours on a sys-

tem. IFTTT for example, allows users to define conditions, such as “if there is a chance

of rain tomorrow”, in order to automatically trigger actions, such as “notify me”.

10https://tools.ietf.org/html/rfc6454 (accessed on 17/10/2017)
11http://ifttt.com/ (accessed on 17/10/2017)
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At the opposite end of the spectrum from computer programs, human instructions

can be seen as ways to “program” human behaviours. Humans are capable of spec-

ifying complex workflows based on human actions. One of the main disadvantages

of human instructions, however, is that they are not machine-understandable. Conse-

quently, any useful functionality that a human could benefit from while following a set

of instructions has to be manually accessed and triggered by the user.

The main contribution presented in this section is a framework that allows non-

programmers to define and execute human-machine workflows. A human-machine

workflow is a workflow composed by tasks that can be potentially completed both

by humans or by machines. This approach addresses the limitations of traditional

human instructions by allowing machines to automatically detect when certain ac-

tions are needed, and consequently to actively execute them. Section 7.3.4 presents

the components of this framework and describes how they achieve its objective. An

implementation of this framework is described in Section 7.3.5 and its usability by

non-programmer users is evaluated in Section 7.3.6.

7.3.2 Motivating Example

As a running example, we consider a scenario where a non-programmer human is

writing instructions that include some automatable steps. In this scenario, Jane is an

employee of a company who is in charge of curating content on the company website.

Today Jane has gained access to a text file containing a long list of cities that the

company has worked with. Each line of the file contains the name and Wikipedia page

of the city in the following format:

<London: https://en.wikipedia.org/wiki/London>

Jane’s job is to display the name and official website of each city as a list on the

company’s website. To achieve this, she wants to transform every entry in the dataset

into an HTML list element in this format:

<li>London: https://london.gov.uk/</li>

Jane decides to delegate this task t to John, one of her collaborators, and she gives him

these instructions:

Step 1: Remove <and >from the string of text.

Step 2: Substitute the wikipedia URL with the official website of the city.

Step 3: Enclose the string of text with <li></li>.
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Jane notices that some steps in her instructions could be easily automated by a ma-

chine. However, Jane’s problem is that nobody in her company has programming

skills. Consequently, although some of the required functionalities are available in

their computers, the whole task might have to be completed manually.

The proposed solution for Jane’s problem is to let her use a system that automati-

cally translates her natural language instructions into a formalised representation, such

as PROHOW, and that semi-automatically links them to machine functionalities. This

system might analyse the natural language description of steps 1 and 3 and detect that

they fall within its capabilities. Given this configuration, when task t is started with a

new string of text as input, the system could immediately execute the first step of the

instructions. Then, as soon as the second step is complete, the third step will also be

automatically executed.

The system will store the information about Jane’s task as Linked Data. This will

allow the system to publish this information to other systems, and maybe discover that

there is an external service that can also automate the second step of Jane’s instructions.

For example, an external service might be able to automate Jane’s second step by

querying the DBpedia dataset, which contains information about the official websites

of a large number of cities.

An important observation that can be derived from this example is that it is inef-

ficient to create ad hoc systems to achieve these types of tasks, especially when they

are small in scale, and when they can occur frequently but with variations. For ex-

ample, other problems might require the same functionalities required by t, but com-

bined together into a different workflow. Instead of creating rigid ad hoc solutions for

human-machine collaboration, I propose an approach to automation that makes use of

simple and generic machine capabilities that can be integrated with several different

human-made instructions.

Many such capabilities can be imagined. For example, a trigger capability could

instruct a machine to start the task “organise lunch in the park” if the weather is sunny

and if no other commitment is scheduled for lunchtime in the user’s calendar. If the

user decides to do this activity, his or her calendar might also be updated automatically.

Alternatively, a machine could assist the organiser of an event who decides to “send a

message” to a large number of invitees. A machine might know two methods to au-

tomatically “send a message” to a person: by email and by mobile text. The machine

could automatically send the message to all invitees whose email or mobile number is

known. The remaining invitees could then be manually contacted by the event organ-
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iser using other channels. This scenario highlights the flexibility of human-machine

collaboration, since a purely manual approach would be inefficient, and a purely auto-

matic approach would be infeasible. More examples of machine capabilities that are

being used by non-programmer users can be found on the IFTTT website.

7.3.3 Problem Description

The concept of tasks refers to things that can be accomplished. As such, they can be

used to define goals, namely things that a person wants to accomplish. The main use

of the concept of tasks is to provide a layer of abstraction over the actual actions that

are performed to accomplish them. The types of tasks that humans can describe is very

broad, and when interacting with machines, the level of abstraction at which they are

described plays an important role. At the opposite ends of the abstraction spectrum we

can find very abstract tasks, such as “Behave well”, and very specific tasks, such as

“Increment variable X by 1 unit”. Typically, machines struggle to understand abstract

tasks, while they can often accomplish specific tasks more efficiently than humans.

Humans, on the other hand, can easily describe tasks in abstract terms, but struggle

to define them in a very specific and rigorous way. Tasks that are too abstract for

machines to automate, or too specific for humans to describe, are outside the focus

of this project. To evaluate whether this different level of abstraction is a solvable

problem, I formulate the following hypothesis:

Hypothesis 10. There is a non-empty intersection T between the set H of tasks that

can be easily defined by (non-programmer) humans, and the set M of those that are

automatable by machines.

Lacking a previous baseline to compare to, we can consider a task to be easily

definable if the majority of (non-programmer) humans can define it at a sufficient level

of abstraction for it be machine-understandable. A task will be considered defined if a

user can generate a PROHOW representation of the task which includes, for example,

its steps and requirements.

The objective of this work is to allow (non-programmer) humans to make better use

of machine functionalities on the Web by allowing machines to understand which of

their services is needed and when. This type of human-machine collaboration can be

achieved by having humans and machines interact through a shared knowledge base.

To this end, the problem that will be addressed is how to allow a (non-programmer)

web user to share (1) human-made instructions and (2) information on the progress
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Figure 7.5: Schema of the main components of the human-machine collaboration

framework. Humans and machines interact with each other through a shared know-

ledge base.

made at completing the tasks described in those instructions, in a form that is both

human and machine-understandable.

7.3.4 A Method for Human-Machine Collaboration

At the core of the proposed approach for human-machine collaboration is a knowledge

base that is shared between humans and machines. Humans and machines collaborate

with each other by interacting with this knowledge base, as depicted in Figure 7.5.

This knowledge base adopts the PROHOW vocabulary to represent know-how and its

execution.

In this approach, communication is performed indirectly, by modifying the shared

knowledge base. This can be seen as a type of stigmergy (Omicini et al. 2004), namely

indirect communication through modification of the environment. For example, if a

machine wants to communicate to humans (or to other machines) that a particular step

has been automated, this will be done by adding this information to the knowledge

base. This type of indirect communication avoids the problem of how to implement

direct communication between human and machines. Instead, it casts human-machine

collaboration as a knowledge sharing problem, and as such it is amenable to being

handled by Semantic Web technologies.

Human and machines interact with the knowledge base in two different ways. Ma-

chines can directly access it to query or modify its contents, since the knowledge base

is represented as an RDF dataset. Moreover, machines can understand this knowledge

base by following its logical interpretation, as defined by the PROHOW vocabulary.

This logical interpretation allows machines to make inferences over this knowledge

base. For example, a machine could infer that a certain task has been implicitly ac-

complished because all of its steps have been completed, or it could infer that it is not
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yet time to complete a certain task because some of its requirements are still incom-

plete.

Humans, on the other hand, interact with this knowledge base through an intuitive

Web interface. This interface allows humans to “read” the knowledge base by pro-

viding it in a human-readable form. For example, while a machine could query the

knowledge base to retrieve all the steps of a given task, a human could visualize the

list of steps in an HTML page. This interface also allows humans to “write” to the

knowledge base. This can be done, for example, by parsing a user’s natural language

instructions into the PROHOW model, or by interpreting a user action of ticking off a

certain step as an indication that the step has been completed. An implementation of

this interface will be presented in Section 7.3.5.

Once humans and machines interact through a shared knowledge base, they can

collaborate on the execution of tasks. This collaboration can be divided into three

phases: (1) know-how acquisition, (2) know-how linking and (3) execution. The typi-

cal workflow of the proposed framework will now be described across these phases.

7.3.4.1 Know-How Acquisition

In the first phase of this framework, know-how is converted into a PROHOW represen-

tation. This conversion is based on the assumption, validated in Chapter 5, that humans

can write instructions in a semi-structured form, such as the one of wikiHow instruc-

tion pages. For example, we can consider the following natural language instructions

for the string transformation task :t described in Section 7.3.2:

Step 1: Remove ă and ą from the string of text.

Step 2: Substitute the wikipedia page of the city in the string of text with official

homepage of the city.

Step 3: Enclose the string of text with ălią ă/lią.

By exploiting the implicit structure of this text, it is possible to automatically gen-

erate the following RDF graph:
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:t prohow:has_step :1, :2, :3 .

:1 rdfs:label "Remove < and > from the string of text." .

:2 rdfs:label "Substitute the wikipedia page of the city in the

string of text with official homepage of the city." .

:3 rdfs:label "Enclose the string of text with <li> </li >." .

:2 prohow:requires :1 .

:3 prohow:requires :2 .

7.3.4.2 Know-How Linking

In the second phase of this method, an existing set of instructions is linked with au-

tomatable functions. For example, we can imagine a machine :x capable of removing

specific characters from strings of text. This machine can describe its capability in

terms of the task it can accomplish. For example, the following RDF graph describes

the task :t1 of “Remove a character from a string of text”. This task specifies the

requirements :r1 “The string of text to modify” and :r2 “The character to remove”

which should be known before the task can be automated.

:t1 rdfs:label "Remove a character from a string of text" .

:r1 rdfs:label "The string of text to modify" .

:r2 rdfs:label "The character to remove" .

:t1 prohow:requires :r1, :r2 .

PROHOW allows functionalities to be defined at the input/output level. A func-

tionality :f with a set of inputs I and a set of outputs O is described with a set of

prohow:requires and prohow:has_method relations. A prohow:requires link

from :f to one of its inputs :i represents the dependency between :f and :i, thus

making sure that the functionality will not be executed before its input is available. A

prohow:has_method link from an output :o to :f represents the fact that one way to

obtain :o is to perform :f.

Going back to our example, we can imagine a step :t2 of a procedure that re-

quires the character “<” to be removed from string :s. This step can be linked to the

functionality offered by machine :x with the following triples:

:t2 prohow:has_method :t1 .

:t2 prohow:has_constant :c1 .

:c1 rdfs:label "<" .

:r1 prohow:binds_to :s .

:r2 prohow:binds_to :c1 .
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Once this link has been created, machine :x will detect that its capability of ac-

complishing task :t1 can also be used to accomplish task :t2. When task :t2 needs

to be completed, machine :x will try to accomplish it by executing :t1. Bindings

between tasks can be used to specify which particular parametrisation of a task can be

used to accomplish another task. In this scenario, for example, the character to remove

:r2 is bound to the constant “<”. These types of links can connect a single machine

functionality, or one of its parametrisations, to any number of more abstract tasks that

this functionality can accomplish. For example, task :t1 could be linked to any string

modification task that specifies a string and a character to remove from that string.

The discovery of these kind of links can be seen as a form of subsumption match-

ing, since the set of possible ways of accomplishing the more abstract task subsume the

set of possible ways of accomplishing the more specific one. This discovery process

can be performed in different ways. In Chapter 6 I presented a fully automated link

discovery system. In this chapter, instead, I will consider a semi-automated approach.

Whenever a user creates a set of instructions, an integration service can select from

a large number of available resources the ones that seem to be most related to each

part of the instructions. Humans will then be asked to verify whether a link should be

created or not.

7.3.4.3 Collaborative Execution

When a human or a machine intends to execute a task, an RDF graph is created that

declares a new execution of that task. For example, the following triple is sufficient to

declare a new attempt :en to accomplish task :t.

:en prohow:has_goal :t .

Declaring this intention could be as simple as pressing a “Do it!” button available on

the same web page that describes task :t.

After the creation of this triple, it is possible to retrieve information about :en in

order to view (and if necessary modify) the current state of the execution. For a human

user, a visualization of :en could display, for example, which steps of the procedure

have already been completed, and which still need to be completed. In the PROHOW

vocabulary, the fact that the execution :ex1 of the first step :t1 of the instructions :t

has been completed can be represented with the following graph:

:ex1 prohow:has_task :t1 .

:ex1 prohow:has_result prohow:complete .



Chapter 7. Know-How Applications 173

:ex1 prohow:has_environment :en .

After this information is stored in the shared knowledge base, all the humans and

machines collaborating on this task will be able to discover that the first step :t1 has

been completed. They would then infer that it no longer needs to be carried out and

could decide to execute the following step instead.

7.3.5 A Human Interface to the PROHOW Vocabulary

Unlike machines, humans cannot directly interact with PROHOW data. Their interac-

tions need to be mediated through human-understandable interfaces that allow users

to both visualise and modify this data. For example, such an interface might present

entities organised into familiar structures, such as an ordered list of steps or to-do

checklists. In order to allow users to modify the data, several functionalities need to

be implemented. In particular, users should be able to create new sets of instructions,

create links between them, start new executions of a task and update their progress.

As a proof of concept, one such interface has been developed as an online service12

which allows users to follow the three main phases defined in Section 7.3.4. This

interface includes an online editor that translates the user’s input into PROHOW data in

a similar fashion than the KnowHow4j tool. If the user is satisfied with the machine

interpretation of the instructions, a save button stores the generated know-how as an

RDF graph in the knowledge base of the system, minting new URIs for each component

of the instructions. Those URIs are dereferenceable, and users can use them to request

a human-readable visualization. The same URI can be used by machines to obtain

a machine-readable version. The graphical interface also allows users to initiate and

update task executions. The user can choose whether to complete all tasks manually,

or to let the system automate them whenever possible.

7.3.6 Experiments

The objective of this experiment is to support the hypothesis that the majority of (non-

programmer) Web users can define certain tasks at a level of abstraction which is un-

derstandable by machines. This hypothesis is evaluated with respect to the three phases

of the framework described in Section 7.3.4: know-how acquisition, know-how link-

ing and execution. This experiment is also meant to demonstrate the application of

12http://w3id.org/prohow/editor (accessed on 17/10/2017)
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this approach in a concrete scenario. Human participation in this experiment has been

obtained through the crowdsourcing platform Crowdflower.13 Participants were asked

information about their computer skills to exclude answers from computer experts.

7.3.6.1 Evaluation of the Know-How Acquisition Phase

The hypothesis relevant to the know-how acquisition phase is that humans can write

semi-structured procedures which can be automatically parsed into an RDF representa-

tion. This was evaluated by asking 10 workers to solve the example task described in

Section 7.3.2 through an online survey.14

Workers submitted their instructions in a text-box in natural language. To improve

the quality of their submissions, workers were asked to follow certain rules, such as to

clearly divide their instructions into steps, and were offered a bonus compensation for

creating high quality instructions. All the original submissions are available online.15

Of the 10 submissions received, 3 were rejected as non-genuine attempts. Of the re-

maining submissions, the best 5 were considered for the next part of the experiment.

The number of workers involved in this first part of the experiment was kept small

due to practical constraints. One constraint comes from the fact that collecting creative

contributions is a notoriously difficult task using crowdsourcing techniques, due to the

difficulty in automatically validating the user’s contributions (Eickhoff and de Vries

2013). Another constraint comes from the fact that the more sets of instructions are

considered, the more potential links to automatable functions need to be evaluated

in the subsequent phase of the experiment. The main disadvantage of considering

a low number of sets of instructions is that it reduces the statistical significance of

this evaluation. However, as discussed in Section 3.3.3, the value of this experiment

comes in demonstrating the feasibility of a know-how execution system in at least

one scenario. The extent to which these findings can be generalised, instead, is not

investigated in depth.

7.3.6.2 Evaluation of the Know-How Linking Phase

To judge whether non-programmer humans can correctly link instructions to automat-

able functions, each of the 16 steps of the five best sets of instructions was paired with

10 different machine functionalities. All automatable steps have been paired with one

13http://www.crowdflower.com/ (accessed on 17/10/2017)
14http://w3id.org/prohow/r1/survey (accessed on 17/10/2017)
15http://w3id.org/prohow/r1/survey_results (accessed on 17/10/2017)
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Figure 7.6: Precision and recall of the links generated by the workers.

or more relevant functionalities, as well as unrelated ones. For each step-functionality

pair, workers were asked to judge whether a particular functionality (in the survey

called action), such as “Remove every occurrence of a particular character from the

string of text” is relevant for the execution of a particular step (in the survey called

goal), such as “Remove < and > from the string of text”. Each worker was asked

to choose one of the following three answers: (1) “YES, this action can completely

achieve the goal”, (2) “YES, BUT the action can only achieve part of the goal” or (3)

“NO, the action is unrelated with the goal”. For some functionalities, workers were

also asked to provide information on how the function should be completed, for exam-

ple by answering the question: “Which is the character to remove?”.

For each step-function pair the judgement of 10 different workers was obtained,

and then the judgement given by the majority of the workers was selected. For all

questions, the most common answer was always chosen by more than 50% of the

workers. To judge whether an answer is correct or not, the first answer is interpreted as

the creation of a prohow:has_method link between the step and the functionality; the

second answer as the creation of a prohow:has_step relation, and the third answer

as no relation. The links generated by the majority of the workers were manually

evaluated and the precision and recall of those links is shown in Figure 7.6. The result

of this evaluation shows that in this experiment the majority of the workers correctly

chose to create a link between a step and a functionality 97% of the time, discovering

82% of all possible correct links.

7.3.6.3 Demonstration of the Execution Phase

To enable collaborative human-machine execution, the machine functionalities which

workers previously created links to have been implemented. The system that I devel-

oped listens to changes to its knowledge base to detect when and how its functionalities

are needed. When this happens, the system will execute the functionality and modify
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the knowledge base accordingly, so as to allow the human user to notice that a task has

been accomplished. As a result of this experiment, all the five sets of instructions are

now available online,16 and each of them contains at least one automatable function.

7.3.7 Related Work on Human-Machine Collaboration

This know-how execution application allows humans and machines to collaborate by

interleaving human and machine actions to achieve a common goal. This application

is related to a set of partially-overlapping research areas focussed on mixed human and

machine computations which have been reviewed by Quinn and Bederson (2011). Hu-

man Computation (HC) is one of these areas, and it is focussed on combining human

and machine efforts to solve tasks that neither humans nor machines alone could solve

efficiently. However in typical HC systems, such as Galaxy Zoo,17 humans play a sub-

ordinate role, and their collaboration relies on an existing centralised software system.

More control is given to users of Human-Provided Services (HPS) (Schall 2012). In

HPS, users can define and advertise the services they want to offer, although they are

not in charge of the overall computation.

Related to HC are the fields of Social Machines (SM) and Social Computation

(SC) (Shadbolt et al. 2013). While HC systems might not have a social dimension,

SM and SC focus on how to support social interactions between users. A relevant SC

system is LSCitter, created by Murray-Rust and Robertson (2014). LSCitter provides

automatic support to users performing collaborative tasks, such as organising a meal or

sharing a taxi. While these collaborations are initiated by the users, they must currently

follow pre-defined protocols. LSCitter is based on the Lightweight Social Calculus

(LSC), an extension of the Lightweight Coordination Calculus (LCC) developed by

Robertson (2005). LSC is a method to specify the protocols of interactions between

multiple human and machine agents and to enable these interactions computationally

in a distributed fashion.

The WeDo system, developed by Zhang et al. (2014), also aims to support human

collaborative activities. WeDo provides this support by acting as a coordinator between

the human participants, to collect knowledge on how to achieve a task first, and to

organise its execution later. The coordination support provided by WeDo, however,

cannot be customised by the users.

In all of these areas, expert intervention is required to define and customise the

16http://w3id.org/prohow/r1/instructions (accessed on 17/10/2017)
17http://www.galaxyzoo.org/ (accessed on 17/10/2017)
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human-machine collaboration workflow. As a result of this, users do not currently

have freedom to define how to achieve their individual goals. Compared to these re-

search areas, my know-how execution application features one major novelty. Users of

my application are in charge of defining the human-machine collaboration workflow

that they want to follow and are in control of initiating and managing the compu-

tation. An additional feature of my application that is not typically found in other

systems is that automation can happen opportunistically, as any task could in principle

be accomplished manually. In other words, in different environments, the same set of

instructions could be automated to a lesser or greater degree.

7.3.8 Discussion

In this section I have addressed the problem of enabling non-programmer humans to

specify the type of behaviour they require from machines, as opposed to being con-

strained by pre-defined functionalities. To solve this problem, I have presented the

first framework that allows non-programmers to define and execute human-machine

workflows—that is, workflows that combine human and machine actions to achieve a

common goal.

Human-machine collaboration is achieved by indirect communication through a

shared dataset using the PROHOW vocabulary. The logical interpretation associated

with this vocabulary makes the knowledge base machine-understandable, allowing ma-

chines to infer when and how their functionalities are required. At the same time, this

knowledge base is made human understandable by a direct visualization of its contents

through an intuitive web interface. Using this interface, user-generated instructions in

natural language are automatically translated into Linked Data.

The main objective of this work is not to describe how humans and machines col-

laborate, but rather to enable this collaboration in practice. To demonstrate this, I

presented an implementation of the proposed collaboration framework which was eval-

uated in a concrete test scenario. The results of this experiment support the hypothesis

that non-programmers can specify certain types of instructions at the level of detail

required for machine understanding. However, these results have been obtained by

considering only a single scenario. The extent to which they can generalise to other

scenarios and domains has not been investigated.

This hypothesis is related to the previous pieces of work described in Section 2.3.3,

which are focussed on learning automatable commands from non-programmer users.
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These pieces of work, however, focus on complete automation and are not intended

to support human-machine collaboration, where tasks are only semi-automatable. Al-

though this previous work does not make use of the PROHOW model, it can be seen as

further evidence of the ability of non-programmer users to define reusable executable

commands when supported by effective procedural-knowledge capturing tools. An in-

teresting avenue for further research might involve the integration of such approaches

within the second phase of the framework described in Section 7.3.4.2 to link a set of

instructions to machine functionalities.

The machine functionalities discussed in this chapter could also be implemented

as services, such as Web Services, which represent reusable automated functions that

can be requested when needed. For example, a weather service can be invoked to

discover the weather conditions in a specific location. Their integration with human

instructions can then be seen as a form of service composition. An approach to discover

and compose services exploiting the natural language description of services has been

proposed by Sangers et al. (2013). Sangers et al. make an important point about the

need for services to be easily understandable by non-technical people, which is also

relevant in my work. They argue that the composition of services should be driven

by those which understand their semantic properties, such as business experts, rather

than those that understand their syntactic properties, such as technicians with service

composition skills. Their approach extracts natural language descriptions of services

from their metadata, also exploiting the fact that non-machine readable properties,

such as the identifier name of a service, are often made up of very relevant human

readable words. Their system comprises of different rules to extract such information

from different properties of web services and from different web service description

languages, such as OWL (Bechhofer et al. 2004) and WSMO (Roman et al. 2005). The

usefulness of this approach is demonstrated by allowing non-technical users to discover

relevant services using keywords-based queries. This related piece of work could be

seen as a possible approach to allow human users to discover relevant services to link

to their natural language instructions. Although it might not be possible to invoke

these services automatically, they could be displayed as additional information to a

user interested in achieving a task, who can then decide whether to invoke them or not.
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Figure 7.7: A multi-agent environment with no shared editable resources. Dashed and

solid lines represent, respectively, the ability to read and write Linked Data resources.

7.4 Decentralised Know-How Execution

In the previous section I presented the prototype of a system capable of tracking the ex-

ecution of a set of instructions and automatically complete its steps when possible. In

this section I generalise this approach to automation to the case of multiple agents and

decentralised resources. As its main contribution, this section presents a novel applica-

tion of Linked Data as an indirect collaboration framework for humans and machines.

I will discuss the main benefits and limitations of this framework and propose initial

solutions to the problems of dynamic Linked Data discovery, of querying frequently-

updated distributed datasets and of guaranteeing consistency in the case of concurrent

updates by multiple agents. It should be noted that I will discuss this framework only

at a conceptual level, as a concrete implementation of it has been not been developed

and remains as a possible direction for future work. The contents of this section have

been published as a workshop paper (Pareti 2016).

7.4.1 Problem Description

I propose a framework that allows a collaborative set of human and machine agents,

who can publish and access web resources but cannot directly interact with each other,

to communicate and coordinate their actions to collaboratively achieve tasks in the

absence of a centralised system. To achieve decentralisation, no shared resource which

multiple agents can edit is assumed to be available. As depicted in Figure 7.7, each

agent is able to modify resources in its own repository while it is able to read the

resources in all of the repositories of the other agents. In this context, communication
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refers to the process by which agents can propagate information (i.e. RDF triples) to

the other agents by modifying the collective knowledge, namely the resources that

all agents can access. Coordination instead refers to the ability to guarantee certain

conditions across all datasets. For example, coordination might be required to ensure

that no agent can declare its intention to execute a task which is already being executed

by another agent.

This framework is intended to address dynamic partially-automatable problems. A

partially-automatable problem requires some human intervention, as it cannot be en-

tirely automated. At the same time, it cannot be optimally solved by humans alone,

as some part of it could be automated. Dynamic problems, instead, are those that can-

not be predicted in advance, making the development of dedicated software solutions

impractical. To simplify the problem at hand, it is assumed that the agents involved

already know and trust each other. Issues such as agent discovery, coalition formation

and trust are considered outside the scope of this project.

7.4.2 Motivating Example

As a running example we take the following use-case. John is an employee of a com-

pany working on a project alongside with Ann. Every week, John and Ann write a

report about the status of the project which then gets sent to the other members of the

company. To do so, they agree on the following procedure:

Weekly report procedure:

- Step 1: John writes a draft of the report

- Step 2: The report is uploaded to an online repository

- Step 3: Ann corrects the report

- Step 4: The report is sent to all the colleagues

While this procedure can be completed manually, it can also be made more effi-

cient with automation. For example, as soon as John finishes writing the draft of the

report, a machine agent could upload it to the correct repository. Ann could then be

automatically notified that she can start correcting the report as step 3 is ready to be

executed. Step 4 might also be a good candidate for automation. Different colleagues

might have different preferences on how to be contacted. For example, some might

prefer to receive an email, others a message on an instant messaging system or a so-

cial networking platform. A machine agent could deal with these diverse preferences

automatically, provided its given the necessary contact details.
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7.4.3 Method

Lacking any central system, agents are the only components of the proposed frame-

work. At a functional level of abstraction, all agents can be seen as entities capable of

reading and writing Linked Data resources. Agents also have individual repositories

where they can publish and modify Linked Data. More specifically, agents routinely

perform three phases. During the first phase, agents “sense” the environment by ac-

cessing the Linked Data resources of the other agents. This phase is described in

Section 7.4.3.1. During the second phase, agents can perform actions and decide what

to communicate to the other agents by reasoning over the state of the environment and

their own capabilities. Human agents perform this phase by interpreting the state of the

environment using intuitive interfaces while machine agents use a logical formalism.

This phase is described in Section 7.4.3.2. During the third phase, agents update their

own repository with the information they intend to communicate to the other agents,

such as the outcome of their actions. This phase is described in Section 7.4.3.3.

7.4.3.1 Knowledge Retrieval

While direct communication requires knowledge of the recipients of the messages, in-

direct communication requires a common environment that all agents can observe (Keil

and Goldin 2006). An agent wanting to use direct communication must know how to

transmit information to specific recipients. This would be a impractical in our scenario

as agents might be humans or machines and might need to agree on different communi-

cation protocols. On the other hand, agents using indirect communication mechanisms

only need to know how to store and retrieve information from the shared environment.

Using indirect communication, agents can be oblivious to the characteristics or even

the very existence of the other agents.

This framework adopts the same indirect communication mechanism presented in

Section 7.3.4. In this framework, the shared environment that enables indirect com-

munication is a set of Linked Data resources available online, here called collective

knowledge. Therefore agents, to communicate, only need the ability to read and write

Linked Data resources. It is important to notice that while all agents can access and

modify the overall collective knowledge, they cannot modify all parts of it, but only

the resources that they have direct control of.

Although agents do not need to have explicit knowledge of each other, they need to

know where to access the resources that make up the collective knowledge. Implicitly,
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Figure 7.8: Dynamic Linked Data exploration can lead to the discovery of a large

amount of resources. Adding the dashed link reduces the link distance from the seed

URIs to ex6:r to 1.

this involves either knowing or being able to retrieve the addresses of the resources

of the other agents. One possible approach is to agree on a URI for the collaboration.

This URI should be dereferencable to an RDF resource containing the addresses of the

other repositories in the collective knowledge. For example, we can imagine agent a

joining coalition x:coalition. By dereferencing this URI, an agent might retrieve the

following triples:

x:coalition prohow:includes a:resource , b:resource , c:resource .

The relation prohow:includes is possible extension to the PROHOW vocabulary to

link the identifier of a coalition with the resources included in the collective know-

ledge of the coalition. These resources are here called seed URIs. If none of the seed

URIs points to a resource editable by an agent a, then it can be inferred that agent a

does not belong to this coalition, as it would not be possible for this agent to commu-

nicate information to the other agents. We will assume here that resource a:resource

is editable by agent a. Agents do not necessarily know how many other agents are in-

volved in the coalition, if any, as Linked Data resources might not belong to any agent,

or multiple resources might belong to the same agent.

Agents wanting to agree on a coalition URI and on the list of seed URIs might have

to resort to direct communication or to centralised systems, such as a matchmaking

service. This process, however, is considered part of coalition formation and therefore

outside of the scope of this work. In this section we assume that agents already have

access to the list of seed URIs.

Having obtained the list of seed URIs, agents can now discover the collective know-
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ledge of the coalition. This is done by dereferencing the URIs of the entities they are

interested in, starting from the seed URIs. Agents should attempt to request machine-

readable versions of the resources first, using content negotiation. The retrieved re-

sources should then be correctly interpreted if encoded in one of the standard formats,

such as Turtle, RDF/XML or RDFa. After retrieving all the data in the collective know-

ledge agents can proceed to reason about it by querying it. The process of querying dis-

tributed Linked Data resources by retrieving and storing them locally is a very common

approach, and it has been identified by terms like data warehousing, materialisation-

based approach (Umbrich et al. 2011) or data consolidation (Langegger 2008).

Dereferencing URIs allows agents to dynamically discover Linked Data resources

at runtime. However, as depicted in Figure 7.8, the discovered resources might contain

more URIs which lead to the discovery of even more resources, giving rise to a virtually

unconstrained set of resources. As with web crawling, if no limit is imposed on the

depth of the exploration, an excessively large number of resources could be discovered

and included in the collective knowledge. Considering that agents need to frequently

access all the resources in the collective knowledge, unconstrained exploration is im-

practical.

One possible solution to this problem is to limit the exploration of URIs only to

one level from the seed URIs. In other words, only URIs directly retrieved beyond

the seed URIs would be considered as potential resources in the collective knowledge.

Agents discovering relevant resources by exploring beyond this limit can include them

in the collective knowledge by adding their URIs in one of the seed URI resources.

In principle, any RDF resource could be considered relevant by the agents and then

added to the collective knowledge. For example, relevant resources could explain how

to decompose a task that the agents need to perform. In Figure 7.8, for example,

agent a can add ex6:r to the collective knowledge by adding a link to it in resource

a:resource.

An alternative to dynamic Linked Data discovery is the addition of relevant data

into a single repository. For example, agent a could copy the RDF data from resource

ex6:r into its resource a:resource. Doing this would give more flexibility to agent

a to decide which triples to include in the collective knowledge. By linking to re-

source ex6:r instead, agent a must commit to including all data from this resource

in the collective knowledge. Moreover, copying data in the agent’s repository could

be considered a more stable approach in case the external resource has a high risk of

becoming unavailable.
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If the external resources are sufficiently stable and do not contain a significant

amount of superfluous information, however, the dynamic Linked Data discovery ap-

proach seems more advantageous. Superfluous information is information contained in

a resource that is not needed by the agents to collaborate. Linking to external resources

and allowing their discovery avoids the problem of data duplication. Data duplication

not only increases the amount of data hosting capability required by the agents, but it

also makes updates more difficult. In fact, if the data duplication approach is followed,

an update to repository ex6:r might take a long time to propagate to all the resources

that contain its copy, or even not propagate at all. For these reasons, dynamic Linked

Data discovery at runtime can be a practical solution if the discovered resources are

stable and self-contained.

7.4.3.2 Knowledge Representation and Reasoning

In order to communicate meaningfully, a shared knowledge representation needs to be

established. In this framework, this representation is the PROHOW vocabulary. For

the reminder of this section I will assume that data is encoded as RDF and the agents

share PROHOW as a common vocabulary to represent instructions and their executions.

However, several approaches could be used in scenarios where these assumptions do

not hold. For example, ontology matching techniques could be used to create seman-

tic interoperability between different conceptualisations (Otero-Cerdeira et al. 2015).

Also, systems such as the ones described in Chapter 5 can be used to translate non-RDF

information into RDF.

One of the main challenges to enable communication between humans and ma-

chine agents is the representation of knowledge in a form which is both human and

machine-understandable. It is therefore important to map such representation both to a

logical formalism to allow machine reasoning, and to an intuitive representation, such

as natural language, which can be understood by humans. Data modelled with the

PROHOW vocabulary can be translated both into a natural language representation and

into logical statements, as discussed in the previous section. Logical statements allow

a machine to infer, for example, that a task is ready to be executed because if all of its

requirements are complete, or that it has been accomplished if one of its methods has

been completed.

While machines rely on logic, human reasoning and actions are mediated through

interfaces, such as the one described in Section 7.3. In this context, an interface is

defined as a software agent capable of translating Linked Data into a human readable



Chapter 7. Know-How Applications 185

representation and of translating human interactions into Linked Data.

7.4.3.3 Knowledge Update and Coordination

An agent wanting to communicate a set of triples to the other agents does so by pub-

lishing them in a repository which belongs to the collective knowledge. It will be the

other agents’ responsibility to retrieve these triples and to consider them in their rea-

soning process. This approach is straightforward in case the decision to upload certain

triples is independent on the rest of the collective knowledge. However, coordination

typically requires inferences based on the whole collective knowledge, and changes to

the collective knowledge could potentially invalidate such inferences. For example, an

agent’s decision to complete a task might be overridden by the knowledge that the task

has already been completed.

In RDF, changes to a knowledge base can be seen in terms of additions and deletions

of triples. The problem of unexpected deletions of triples can be avoided by choosing a

knowledge model that does not require triple deletion. The chosen model, PROHOW, is

based on a monotonic increase of RDF triples and no facts need to be retracted in order

to update a dataset. To avoid the problem of unexpected triple additions, agents should

write potentially conflicting statements as “candidate” additions which are confirmed

on a first-come first-served basis only after verifying that no other conflicting statement

exists.

Candidate sets of triples can be written using RDF reification (Hayes 2004). Reifi-

cation provides a unique identifier for each triple, which can be used to attach meta-

information about the triple such as the timestamp at which the reified triple was cre-

ated. Moreover, a reified triple does not entail the triple. This gives agents the flexi-

bility to limit their reasoning only to confirmed facts or to consider also the candidate

statements that other agents intend to assert.

Going back to the example presented in Section 7.4.2, we can imagine that both

John and a machine agent a are capable of completing step :t2, “The report is up-

loaded to an online repository”. In this scenario, it is desirable that only one of the

agents accomplishes task :t2. This problem can be solved by coordination, and a sim-

ple way of implementing it is on a first-come-first-served basis as depicted in Figure

7.9. After retrieving the collective knowledge (timestamps t1 to t3) and discovering

that task :t2 needs to be completed, John publishes on his individual repository LD1

the intention to complete it using timestamped reified statements at time t4. However,

agent a might have also published its intention to complete task :t2 on repository LD3
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LD3LD2

t1: search LD1

t2: search LD2 t3: search LD3

t4: add serialised 
update x in LD1

t5: check conflicts 
in LD2 and [t2, t4]

t7: if no conflicts, add x in LD1

t6: check conflicts 
in LD3 and [t3, t4]

LD1

Figure 7.9: A simple coordination mechanism for distributed datasets.

at an earlier time tx (t3 ă tx ă t4).

Before considering his intention as final, John’s interface will access the other

agents’ repositories to verify whether new conflicting statement have been added be-

tween timestamps t5 and t6, whether reified or not. When accessing resource LD3 at

time t6, John’s interface will discover the intention of agent a to accomplish task :t2.

Since the other agent’s statement has been created before John’s one, the interface will

warn John that task :t2 is already in the process of being automated and he will be

asked not to complete it. Agent a, instead, not having found any conflicting statements

published before its own, will publish its intention to complete :t2 in a non-reified

format and proceed in accomplishing the task. The situation in which two conflicting

statements are published at the same exact time can be resolved with different strate-

gies. For example, both statements can be discarded and the agents can perform a

second attempt at asserting them.

7.4.4 Complexity Analysis

The agents’ behaviour can be seen as a loop where the three phases described in Section

7.4.3, namely knowledge retrieval, reasoning and knowledge update, are repeated with

a certain frequency. I define frequency f as the number of times the iteration is repeated

within a fixed time interval. During each iteration, agents need to retrieve the collective

knowledge locally to reason over it. This process of retrieving data locally might need

to be repeated a certain number of times k. The coordination algorithm described in

Section 7.4.3.3 requires retrieving the data twice (k “ 2) per iteration.

Within a set of agents A collaborating with each other, the average amount of data

that an agent a needs to retrieve to access the collective knowledge is dAp|A|´1q, where

dA is the average number of triples in the repositories of the agents in A. Therefore,

within a fixed time interval, the average number of triples an agent has to retrieve from
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the web is f kdAp|A| ´ 1q. An agent collaborating with multiple sets of agents Ā only

needs to retrieve the resources of each different agent once. Agents can merge data

from each distinct agent it collaborates with (Â “
Ť

APĀ A) and use it to collaborate

with all the other sets of agents in Ā. Using this approach, the average number of

triples an agent would need to retrieve is:

f kdÂp|Â|´1q (7.1)

From this formula it can be observed that the required web traffic increases linearly

with the frequency at which the agent checks and computes updates f and the number

of times the same resources need to be accessed per iteration k. In a concrete im-

plementation of the system, both k and f can be considered constant. The remaining

variables determining the complexity are the average number of triples in the know-

ledge bases of all the other collaborative agents (dÂ) and the absolute number of those

agents |Â|. The web traffic generated by a single agent can then be considered as

having complexity OpdÂ ˚ |Â|q.

The space and computational complexity of the implementation of an agent de-

pends to a large degree on the number of triples that needs to be stored and processed

at each iteration, and it is therefore comparable to the web traffic complexity. The

space and time complexity is also affected by other factors which depend on the spe-

cific implementation of an agent. These factors are the number and type of SPARQL

queries that need to be executed, and the efficiency of the particular RDF storage and

SPARQL engine used.

From this analysis we can observe that the complexity of each agent can be reduced

by having agents collaborate with fewer other agents at a time and by having them

reason over smaller datasets. It should be noted that, thanks to decentralisation, the

complexity of the system does not depend on the total number of agents in the system

nor on the total number of triples involved. This complexity can then be kept constant

as the overall number of agents and knowledge in the system increases. This analysis

suggests that this framework could be applied to a large number of lightweight agents,

namely agents that interact with a small number of other agents and that do not publish

a large volume of data.

This system incentivises agents to keep their number of collaborations within an

acceptable limit because every additional collaboration the agent joins results in an

increase in web trafficking complexity. To reduce this complexity even further, the

web resources used in the collaboration should be small and free of any superfluous
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information. For example, an agent involved in multiple collaborations should con-

sider using a different shared resource for each collaboration, so that agents involved

in a particular collaboration are not forced to retrieve information about other collabo-

rations too.

7.4.5 Discussion

In this section I proposed a novel framework for decentralised human-machine col-

laboration. To avoid the complexity of direct interactions between distributed human

and machine agents, Linked Data is used as an indirect communication mechanism.

The problem of coordination is therefore translated into a knowledge-sharing problem,

where the only requirement for agent participation is the ability to retrieve and publish

Linked Data. Linked Data used for collaboration is frequently updated and therefore

agents need to constantly retrieve the most updated version. The necessity to regu-

larly retrieve distributed resources imposes practical constraints on their size which

results in Linked Data being divided into small and self-contained resources. This

framework can be seen as a promising application scenario for URI dereferencing to

discover Linked Data resources at runtime thanks to the small size of those resources

and the necessity to retrieve them frequently.

The type of indirect communication used in this framework resembles Blackboard

Systems (Corkill 1991). In BS, multiple agents collaborate to compute the solution

to a problem by modifying a shared resource (the blackboard). Fensel et al. (2011)

describe another related communication mechanism which originates from Blackboard

Systems: Triple Space Computing (TSC). In the TSC approach, coordination between

Semantic Web Services is achieved indirectly by publishing and reading RDF resources

on the Web, which are organised into Triple Spaces.

The proposed framework differs from Blackboard Systems for two main reasons.

First of all, in the approach I have proposed the shared environment, or collective

knowledge, is fragmented into multiple resources which cannot be accessed simulta-

neously. A perfectly updated view of the collective knowledge is therefore impossible,

as during the time required by an agent to retrieve a single resource, all the other re-

sources might have potentially changed. Secondly, agents can only modify their own

resources and no resource can be modified by more than one agent. This means that

agents cannot agree on a single resource to be used for coordination. The indirect

collaboration mechanism of the proposed framework can also be seen as a form of
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stigmergy, a term introduced in Section 7.3.4. In the context of multi-agent systems

the term stigmergy traditionally refers to complex collaborations emerging from sim-

ple agents by indirect interactions mediated through an environment. In the case of

rational agents, the concept of cognitive stigmergy has been proposed by Ricci et al.

(2007).

Given the frequent updates to the collective knowledge of all the agents, I have

chosen to query the distributed Linked Data resources using a materialisation-based

approach. If no assumptions can be made on which resources are likely to be up-

dated, and how frequently, this approach guarantees that any update to the collective

knowledge will propagate to all agents after at most one iteration. Under different

assumptions, other distributed query strategies could be more efficient. One class of

approaches assumes that query processing capabilities, such as SPARQL endpoints, are

available remotely (Quilitz and Leser 2008). Under this assumption, queries could

be split into several sub-queries that will be evaluated remotely against the remote

sources. The other class of approaches, to which materialisation-based approaches be-

long to, does not make this assumption and requires remote resources to be retrieved

locally before they can be queried. This process can be optimised by creating local

indexes of the remote resources based on their schema (Stuckenschmidt et al. 2005),

based on the URIs they contain, or based on both of those properties (Umbrich et al.

2011). This information is used to decide which resources to access when computing

a query, potentially avoiding the retrieval of irrelevant resources.

The proposed materialisation-based approach is designed to deal with the high fre-

quency of updates and the need to compute exact answers. I proposed an algorithm

to coordinate the potentially concurrent updates of distributed resources by multiple

agents. The complexity analysis of this system that I conducted shows that this frame-

work can scale to a large number of agents as long as the resources shared by the

agents are kept small in size, and agents collaborate only with a limited number of

other agents at a time.

7.5 Conclusion

In this chapter I have provided examples of the possible uses of the PROHOW model and

of alternative formalisation of instructions. In particular, I have assessed the suitability

of the two main applications that this model is intended to support, namely know-

how discovery and execution. In Section 7.1 I presented HowLinks, a visualisation
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tool for PROHOW data designed to facilitate the exploration of human know-how and

of related factual knowledge. The advantages brought by the PROHOW model were

discussed with respect to “exploration goals”, namely queries that a user might want

to answer by navigating a set of resources. These advantages were exemplified by

five exploration goals that HowLinks allows users to achieve directly, but that would

require significant user efforts using existing instructional websites.

In Section 7.3 I presented a framework to enable humans and machines to collab-

orate in the execution of a task. This collaboration is enabled by sharing a PROHOW

dataset that is both human and machine-understandable. The human interpretation of

this dataset is mediated through a visual interface that translates PROHOW data into

standard step-by-step lists of instructions and their execution into an interactive to-do

checklist. The machine interpretation of this dataset follows the logical inference rules

of the PROHOW model to allow the system to determine when its functionalities are

needed and later to update the state of the execution. An implementation of this system

was described, along with experiments that support the hypothesis that the majority of

non-programmer users can define PROHOW instructions at a level of abstraction which

is compatible with machine functionalities. As discussed in Section 7.3.7, a novelty of

this application compared to previous research is the ability of users to be in charge of

defining the details of the human-machine collaboration they are interested in.

The possibility of decentralising these applications has been investigated in Sec-

tions 7.2 and 7.4. These sections deal with a more complex but realistic scenario

where the PROHOW representation of multiple sets of instructions is not available in a

single dataset, but it is decentralised as distributed Linked Data resources managed by

different agents. I have presented a concrete implementation of a tool that can explore

these resources dynamically. Moreover, I proposed a conceptual framework that could

allow multiple human and machine agents to collaborate to the execution of tasks by

sharing these Linked Data resources.

In conclusion, the two main applications discussed in this chapter demonstrate how

the PROHOW formalisation of instructions can be said to be more understandable by

machines than their original HTML representation. This increase in machine under-

standing was measured as an increase in automation of realistic user goals. This chap-

ter also demonstrates how the information formalised by the PROHOW model not only

supports typical factual knowledge applications such as improved exploration and se-

mantic queries. It also supports applications which are specific to procedural know-

ledge, such as the automated execution of instructions.
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These applications, along with related work on computational uses of instruc-

tions, give an overview of the benefits of formalising human know-how. This is a

research area where much progress can still be made, but that nevertheless already

offers demonstrable benefits.



Chapter 8

Conclusion

An increasingly larger portion of human knowledge is being uploaded on the web,

which is now, for many web users, a major source of information in everyday life. This

knowledge is available for everyone to access, including by machines. Web resources

hold a great potential for computational systems, which can process them in large

amounts to extract reusable patterns and to find answers to complex queries.

To date, these resources have been mostly analysed from the point of view of fac-

tual knowledge. In other words, with the objective of learning facts about the world,

such as the population of cities or the results of sport competitions. However an im-

portant type of knowledge, namely procedural knowledge, or know-how, is still largely

inaccessible by machines despite figuring prominently on the web. In this thesis I fo-

cus on human textual instructions, a common form of procedural knowledge on the

web. The main problem that I addressed are the limitations caused by the fact that

human instructions on the web are not machine-understandable. Such limitations are,

for example, an inability to answer complex queries about instructions, and the lack of

automated support that can be offered to users interested in following instructions.

I have broken this problem down into three sub-problems, namely (1) the formali-

sation of know-how in a machine-understandable way (know-how representation), (2)

the acquisition of such formalisation from existing resources (know-how acquisition)

and (3) the use of this formalisation to support different applications (know-how ap-

plications). In Chapter 1 I discussed how these three problems relate to each other

and why they should not be researched in isolation. The know-how acquisition and

know-how applications problems, in fact, result in conflicting requirements on how to

address the know-how representation problem. More specifically, the choice of a very

abstract formalisation of instructions would ease the acquisition problem but its lack

192
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of details would prevent its effective use in many applications. Conversely, a very rich

formalisation would be useful in many applications but would be difficult to acquire

automatically.

In Chapter 2 I reviewed the current state of the art with respect to this problem.

This highlighted the rich amount of literature concerned with procedural knowledge

coming from different areas such as Automated Planning, Web Services and Business

Workflows. The more specific topic of instructional know-how, however, has not been

investigated in depth in the literature. Of the projects concerned with instructional

know-how, none offers a systematic study of all of the three sub-problems mentioned

in this thesis.

8.1 Main Contributions

In this thesis I have presented and evaluated the first method that addresses simulta-

neously all of the three sub-problems of making know-how more understandable by

machines. This method is centred around the mathematical model of human instruc-

tions presented in Chapter 4. I designed this model, called PROHOW to be compatible

both with human instructions and with existing process formalisms. To achieve this,

several instructional websites were analysed to extract a number of common concepts,

such as steps, methods and requirements, which were then integrated in the model.

At the same time, I have shown how the concepts used in this model can be mapped

to standard concepts used in process formalisms, such as inputs, outputs and activity

decompositions. As an example of this I have provided a concrete mapping between

PROHOW and PDDL (Mcdermott et al. 1998), a language to define formal Automated

Planning problems.

The development of the PROHOW model followed the NeOn method described by

Suárez-Figueroa et al. (2012) and it was guided by a number of competency ques-

tions, namely the type of questions that the knowledge base should be able to answer.

These questions were formulated with respect to two main scenarios: namely know-

how exploration and know-how execution. In the know-how exploration scenario, the

knowledge base should be able to support a user in finding more information about

how a certain task can be achieved. This requires the ability to answer questions such

as: “what are the steps of task t?”.

In the know-how execution scenario, the knowledge base should be able to support

a user in accomplishing a set of instructions. To do so, I have formalised an execution
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model of instructions that follows the intuition behind check-lists. Similarly to check-

lists, the execution of a complex task is decomposed into smaller tasks, or steps, which

are “checked off” when complete. The particular properties of the set of instructions

dictate constraints on this execution, for example mandating a specific ordering of the

steps, and specifying which specific set of steps can be considered sufficient to achieve

a more complex task. In order to support this type of execution, the knowledge base

should be able to answer competency questions such as “which tasks have already been

checked-off?” and “which tasks should I complete next to achieve a certain goal?”.

I have demonstrated how these competency questions can be answered by means

of Automated Planning following the PDDL translation of the model. At the same

time, I have demonstrated how these competency questions can be answered by the

PROHOW vocabulary: a concrete instantiation of this model in RDF. The choice of

using a Semantic Web technology such as RDF allows this vocabulary to be easily

published, accessed and integrated on the web. The experiments conducted in these

thesis were based on this concrete instantiation of the PROHOW model.

Having defined a specific model to represent instructional knowledge, two prob-

lems remained to address, namely know-how acquisition and know-how applications.

In Chapter 5 I have provided a method to acquire PROHOW representations of instruc-

tions from a specific class of instructional resources, namely semi-structured resources.

This method exploited the regular template of certain instructional websites, such as

a standard formatting of steps and requirements, to acquire a complete and correct

formalisation of instructions in PROHOW. I have tested this method on two instruc-

tional websites, namely wikiHow and Snapguide, generating a large-scale dataset of

formalised instructions.

In Chapter 6 I have described a know-how interlinking method based on Natural

Language Processing and Machine Learning to automatically integrate PROHOW in-

structions with each other and with DBpedia. This method discovers links from steps

of instructions and other instructions that explain how to perform them. For example,

the step “Prepare a job application” would be linked to the set of instructions on “How

to prepare a job application”. This method also discovers links from the objects found

in a set of instructions, such as “3 eggs”, and related DBpedia resources, such as the

DBpedia resource for “Eggs”.

To evaluate the quality of this know-how interlinking method I have applied it to

the dataset acquired from the wikiHow and Snapguide. I have compared the results of

this experiment with the equivalent links present in wikiHow instructions created by its



Chapter 8. Conclusion 195

community of users. The results of this evaluation show that the proposed interlinking

method has achieved higher precision and recall. The dataset acquired from wikiHow

and Snapguide and enriched with these links has been published online.1

Lastly, in Chapter 7 I have demonstrated how this formalisation can support two

different applications, namely know-how exploration and know-how execution, in ways

that were not possible without a machine-understandable representation of instruc-

tions. To do this, I have developed two know-how exploration tools. The first one,

HowLinks, provides an integrated visualisation of PROHOW instructions in a single

tree structure that users can expand to explore know-how in novel ways. A subset of

the features of HowLinks is also available through the KnowHow4j tool that I have

developed. Unlike HowLinks, however, KnowHow4j is a lightweight Javascript appli-

cation that can be run in any modern web browser and that can dynamically explore

PROHOW data from decentralised sources. KnowHow4j can also be used by users to

produce sets of human-readable instructions as HTML pages with embedded machine-

readable PROHOW data.

The possibility to use the PROHOW formalisation to support know-how execution

was also presented in Chapter 7. To do this, I have developed a system that gener-

ates PROHOW check-lists from sets of instructions. These check-lists are visualised

by users as an interactive HTML document. Users can “check” boxes to declare tasks

complete and optionally ask the system to automate some of the steps. I have tested

the usability of this system by users with no programming experience. Human partic-

ipation has been acquired through the Crowdflower crowdsourcing platform. In these

experiments, the majority of the workers managed to formalise a specific problem as a

set of instructions and link it to a set of machine functionalities. These functionalities

could then be used to automate certain steps of the instructions.

I have investigated the possibility to extend this type of execution system into a

decentralised scenario where multiple human and machine agents can collaborate to

the execution of a task. The result of this investigation is a conceptual framework

that could enable the collaboration between humans and machines. In this framework,

direct communication between the agents is not required, and the only requirement for

participation is the possibility to publish and share PROHOW data.

Overall, the work presented in this thesis addressed a novel combination of re-

search problems. However, this novelty resulted in a number of challenges, the most

significant being the lack of a previous baseline to compare to, and the lack of a well

1https://w3id.org/knowhow/dataset (accessed on 17/10/2017)
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established methodology for evaluation. As discussed in Chapter 3, I addressed these

challenges by creating a new methodology that incorporates evaluation methods from

different fields.

More specifically, I have evaluated my approach to the know-how representation

problem by analysing the chosen knowledge formalisms with respect to its expressive-

ness and logical properties. This has been done using methods such as competency

questions, which are common in the research areas about ontologies and semantic

technologies. My approach to the know-how acquisition problem, instead, has been

evaluated using experimental methods commonly found in areas such as information

extraction and data integration. These methods involve processing large volumes of

real-world data to compute the precision and recall metrics of the acquired knowledge.

Finally, I have evaluated my approach to enable know-how applications by the cre-

ation of application prototypes. Those prototypes demonstrate novel uses of procedu-

ral knowledge and provide insights on the challenges that are involved in deploying

them.

8.2 Discussion

This body of work represents an initial solution to the three problems addressed in

this thesis. The PROHOW model I developed answers the know-how representation

question about how to formalise instructional knowledge in a machine-understandable

form. Using this model, the know-how acquisition and know-how applications prob-

lems were shown to be solvable. To do so, I demonstrated concrete methods that

answer both (1) the question on how to acquire knowledge in this formalisation from

existing resources, and (2) the question on how to use this formalisation of instructions

to support novel applications. By addressing all three sub-problems at once, this thesis

provides the first complete approach that can be used to make web-instructions more

machine-understandable.

The main problem addressed in this thesis, however, cannot be considered com-

pletely solved. The generation of know-how resources on the web that can be under-

stood by machines is a grand goal, and the work in this thesis only represents an initial

step in this direction. Further improvement is possible in any of the three sub-problems,

for example by generating semantically richer representations of instructions, which

can be acquired from a wider range of resources and used to support more advanced

applications.
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One of the main limitations of my work, for example, is that instructional know-

ledge can be acquired reliably only from semi-structured web resources. Moreover, the

experiments I conducted focus on two semi-structured websites, and decisive evidence

of the applicability of my approach to other similar websites has not been gathered.

Methods to generate PROHOW representations from instructional knowledge in other

forms would extend the practical applicability of my work. Given the large amount of

existing semi-structured resources, however, I argue that this is not a severe limitation.

Although much progress can still be made, the method I proposed already pro-

vides tangible benefits. In particular, the interlinking method presented in Chapter 6

produces links between sets of instructions which are of higher quality than the ones

being used on wikiHow, and which can be generated automatically. Therefore, these

links can be said to be of sufficient quality to be useful to human users, and their

addition on the wikiHow and Snapguide websites could directly benefit their users.

On websites like wikiHow, the components of a set of instruction can be efficiently

linked to up to one external resource by adding an HTML link in the textual represen-

tation of the components. By enriching these instructions with my methodology, web

pages might require certain visualisation changes to accommodate for a larger num-

ber of links. The HowLinks visualisation tool I presented in Chapter 7 represents one

way to do this. Moreover, it demonstrates how formalised instructional knowledge,

when de-coupled from its visual environment, such as an HTML page, can be easily

visualised through different interfaces.

The benefits that would result from more machine-understandable know-how are

not just theoretical, but they are also attainable in practice. The experiments described

in Chapters 5 and 6 demonstrate the scalability of my know-how extraction and in-

terlinking methods when applied to large datasets containing hundreds of thousands

sets of instructions. In particular, efficient strategies have been developed to signifi-

cantly reduce the complexity of the interlinking method which, in its naive form, is

exponential.

Large amounts of formalised instructions can also be stored in a scalable way by

making use of decentralisation. In fact, these formalisations can then be efficiently

and seamlessly stored in the same web pages that contain their human-understandable

representation without the need of a central system. The KnowHow4j tool that I devel-

oped is a demonstration of this, as it allows the generation of human readable HTML

pages with embedded machine readable PROHOW formalisations. These formalisa-

tions, which are embedded as RDFa metadata, are completely transparent to the user.
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The decentralised systems I described in Chapter 7 demonstrate some of the possi-

ble uses of PROHOW formalisations even when such formalisations are decentralised.

In this thesis, human and machine-understandable know-how can be created, hosted,

and used by any user independently, with the aid of simple tools like KnowHow4j,

which can run as scripts in any modern web browser. Arguably, the barrier of entry

to use this technology is not much higher than the one to create and use traditional

unstructured sets of instructions. Overall, I have demonstrated in a real-world scenario

that a single formalism can be used to represent instructional knowledge in a way that

is abstract enough to be easily acquirable from existing instructions, and rich enough

to enable the development of novel applications.

8.3 Future Work

The work in this thesis presents several opportunities for future research. For example,

the execution of PROHOW instructions could benefit from the integration with exist-

ing systems that allow non-programmer users to define simple executable commands.

The applicability of this work, instead, could be extended to unstructured resources

by integrating existing know-how acquisition systems with the PROHOW model. This

integration could also be useful to compare these systems which, as it was discussed

in Section 2.3.1, are not directly comparable due to the semantic heterogeneity of their

formalisms. In this scenario, PROHOW could act as a shared semantic model of instruc-

tions.

The functional links occurring across instructional data, such as task decomposition

links, can be studied as a generic and domain-independent class of links that current

systems, focussed on discovering links based on similarity, cannot efficiently deal with.

This could be investigated from the perspective of the Data Integration and Link Dis-

covery fields. Alternatively, this link discovery problem could be used as a benchmark

for the research of Machine Learning systems targeting extreme class imbalance.

Interlinked know-how can be seen as a type of semantic data, or Linked Data.

Currently, semantic data on the web is, for the most part, a collection of datasets that

can be retrieved and integrated with relative ease. This process is generally performed

locally and web data is rarely used on the web. On the contrary, formalised know-

how can be seen as a promising scenario not only for decentralising web data, but

also to decentralise its use. My initial experiments suggest that currently under-used

technologies, such as dynamic Linked Data discovery, and Linked Data processing by
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web browsers, which are still impractical in many applications, could play a major role

in the domain of formalised human know-how.

In conclusion, the work presented in this thesis can be seen as the first compre-

hensive exploration of the opportunities and research challenges of pursuing machine-

understandable instructional knowledge, which remains a promising direction for fu-

ture work across a diverse range of fields.



Appendix A

The PROHOW Vocabulary

Listing A.1 shows a complete and concrete representation of the PROHOW vocabulary

as an OWL file serialised in the Turtle format. This representation was produced by

the Protégé ontology editing tool.1

Listing A.1: The PROHOW vocabulary represented in the Turtle serialisation of OWL.

@prefix : <http://w3id.org/prohow#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22 -rdf-syntax -ns#> .

@prefix xml: <http://www.w3.org/XML/1998/namespace > .

@prefix xsd: <http://www.w3.org/2001/ XMLSchema#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix prohow: <http://w3id.org/prohow#> .

@base <http://w3id.org/prohow#> .

<http://w3id.org/prohow#> rdf:type owl:Ontology ;

owl:versionIRI :v1 ;

<http://www.w3.org/1999/xhtml/vocab#license > <http://

creativecommons.org/licenses/by/4.0/> .

#################################################################

# Annotation properties

#################################################################

### http://w3id.org/prohow#has_result

prohow:has_result rdfs:comment "The relation between an execution

and its result (e.g. success or failure)."@en ;

1http://protege.stanford.edu (accessed on 17/10/2017)
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rdfs:label "Has Result"@en ;

rdf:type owl:AnnotationProperty ;

rdfs:domain prohow:execution .

### http://w3id.org/prohow#has_value

prohow:has_value rdfs:comment "The relation between an execution and

its associated value."@en ;

rdfs:label "Has Value"@en ;

rdf:type owl:AnnotationProperty ;

rdfs:domain prohow:execution .

#################################################################

# Object Properties

#################################################################

### http://w3id.org/prohow#binds_to

prohow:binds_to rdf:type owl:ObjectProperty ;

rdfs:domain prohow:task ;

rdfs:range prohow:task ;

rdfs:comment "The relation between two tasks that

can be interchanged."@en ;

rdfs:label "Binds To"@en .

### http://w3id.org/prohow#has_constant

prohow:has_constant rdf:type owl:ObjectProperty ;

rdfs:domain prohow:task ;

rdfs:range prohow:task ;

rdfs:comment "The relation between a task and a

task with a pre-defined value."@en ;

rdfs:label "Has Constant"@en .

### http://w3id.org/prohow#has_environment

prohow:has_environment rdf:type owl:ObjectProperty ;

rdfs:domain prohow:execution ;

rdfs:range prohow:environment ;

rdfs:comment "The relation between an

execution of a task , and its environment

that defines its scope."@en ;
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rdfs:label "Has Environment"@en .

### http://w3id.org/prohow#has_goal

prohow:has_goal rdf:type owl:ObjectProperty ;

rdfs:domain prohow:task ;

rdfs:range prohow:environment ;

rdfs:comment "The relation between an environment

and its goal."@en ;

rdfs:label "Has Goal"@en .

### http://w3id.org/prohow#has_method

prohow:has_method rdf:type owl:ObjectProperty ;

rdfs:domain prohow:task ;

rdfs:range prohow:task ;

rdfs:comment "The relation between a task and one

of its methods. If at least one method of a

task is achieved , then the task can be

considered achieved as well."@en ;

rdfs:label "Has Method"@en .

### http://w3id.org/prohow#has_step

prohow:has_step rdf:type owl:ObjectProperty ;

rdfs:domain prohow:task ;

rdfs:range prohow:task ;

rdfs:comment "The relation between a task and one of

its steps. If all the steps of a task are

achieved , then the task can be considered

achieved as well."@en ;

rdfs:label "Has Step"@en .

### http://w3id.org/prohow#has_task

prohow:has_task rdf:type owl:ObjectProperty ;

rdfs:domain prohow:execution ;

rdfs:range prohow:task ;

rdfs:comment "The relation between an execution , and

the task that it was intended to accomplish."@en

;

rdfs:label "Has Task"@en .
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### http://w3id.org/prohow#requires

prohow:requires rdf:type owl:ObjectProperty ;

rdfs:domain prohow:task ;

rdfs:range prohow:task ;

rdfs:comment "The relation between a task and one of

its requirements. If all the requirements of a

task are satisfied , then the task is ready to be

executed."@en ;

rdfs:label "Requires"@en .

### http://w3id.org/prohow#requires_one

prohow:requires_one rdf:type owl:ObjectProperty ;

rdfs:domain prohow:task ;

rdfs:range prohow:task ;

rdfs:comment "The relation between a task and a

sufficient requirement. If at least one

sufficient requirement of a task is satisfied

, then the task is ready to be executed."@en

;

rdfs:label "Requires One"@en .

### http://w3id.org/prohow#sub_environment_of

prohow:sub_environment_of rdf:type owl:ObjectProperty ;

rdfs:domain prohow:environment ;

rdfs:range prohow:environment ;

rdfs:comment "The relation between an

environment and the environment that

generated it."@en ;

rdfs:label "Sub Environment Of"@en .

#################################################################

# Classes

#################################################################

### http://w3id.org/prohow#environment

prohow:environment rdf:type owl:Class ;
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rdfs:comment "The scope of one particular

intention at achieving a goal."@en ;

rdfs:label "Environment"@en .

### http://w3id.org/prohow#execution

prohow:execution rdf:type owl:Class ;

rdfs:comment "A particular attempt at achieving a

task."@en ;

rdfs:label "Execution"@en .

### http://w3id.org/prohow#task

prohow:task rdf:type owl:Class ;

rdfs:comment "Something that can be accomplished by

doing some action."@en ;

rdfs:label "Task"@en .

#################################################################

# Annotations

#################################################################

prohow:complete rdfs:comment "The concept of a succesfully

accomplished task."@en ;

rdfs:label "Complete"@en .
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PROHOW to PDDL Conversion

This appendix presents the translation of the PROHOW model into the PDDL language.

The code presented in this appendix is also available on GitHub.1 Listing B.1 contains

the axioms of the PROHOW model encoded as a PDDL domain description. The ac-

tions accomplish task and instantiate sub env are not part of the basic PROHOW

model, but they allow a planner to simulate the execution of a task, and the decom-

position of a task into a separate sub-environment. If this extension is not needed, the

actions accomplish task and instantiate sub env should be deleted from List-

ing B.1. The accomplish task action also includes the “primitive tasks” extension.

Under this extension, the planner will only be able to directly achieve tasks which

are defined as primitive. If this is extension is not needed, the line (primitive ?t)

should be removed from action accomplish task. Without this extension, however,

the planner would not consider decomposing a super-task into sub-tasks as it can ac-

complish the super-task directly.

Listing B.1: The axioms of the PROHOW model as a PDDL domain description.

(define (domain prohow)

(:requirements :strips :existential -preconditions :typing :

equality)

(:types task execution environment success finished primitive

value)

(:predicates

(task ?x) (execution ?x) (environment ?x) (success ?x) (finished ?

x) (primitive ?x) (active ?x)

(requires ?x ?y) (requires_one ?y ?x) (has_step ?y ?x) (has_method

?y ?x) (has_task ?y ?x) (has_goal ?y ?x) (binds ?y ?x) (

1https://github.com/paolo7/prohow-pddl (accessed on 17/10/2017)
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has_constant ?y ?x) (has_value ?y ?x) (has_env ?y ?x) (sub_env

?y ?x) (complete ?y ?x) (ready ?y ?x) (related ?y ?x) (

infer_active ?x)

(value ?y ?x ?z)

)

(:action accomplish_task

:parameters (?t - task ?e - environment ?i - execution)

:precondition (and

(primitive ?t) ; remove to disable the primitive task

extension

(ready ?t ?e)

(not

(exists (?x)

(has_task ?i ?x)))

(not

(exists (?x)

(has_env ?i ?x))))

:effect (and

(success ?i)

(has_env ?i ?e)

(has_task ?i ?t)))

(:action instantiate_sub_env

:parameters (?e - environment ?a - environment ?t - task ?m -

task)

:precondition(and

(has_method ?t ?m)

(not (= ?e ?a))

(not

(exists (?x)

(sub_env ?e ?x)))

(not

(exists (?x)

(has_goal ?e ?x))))

:effect (and

(sub_env ?e ?a)

(has_goal ?e ?t)))

(:action infer_active

:parameters (?e - environment)

:precondition (and
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(exists (?g) (has_goal ?e ?g))

(or (not (exists (?a) (sub_env ?e ?a)))

(exists (?a ?x)

(and

(sub_env ?e ?a)

(has_goal ?e ?x)

(ready ?x ?a)

(active ?a)))))

:effect (active ?e))

(:action infer_complete

:parameters (?y - task ?e - environment)

:precondition (exists (?i)

(and

(has_env ?i ?e)

(has_task ?i ?y)

(success ?i)))

:effect (complete ?y ?e))

(:action infer_finished

:parameters (?e - environment)

:precondition (exists (?g)

(and

(has_goal ?e ?g)

(complete ?g ?e)))

:effect (finished ?e))

(:action infer_complete_by_steps

:parameters (?y - task ?e - environment)

:precondition

(and

(exists (?x)

(has_step ?y ?x))

(not

(exists (?x)

(and

(has_step ?y ?x)

(not

(complete ?x ?e))))))

:effect (complete ?y ?e))
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(:action infer_ready

:parameters (?y - task ?e - environment)

:precondition (and

(active ?e)

(or

(not

(exists (?x)

(has_step ?x ?y)))

(exists (?x)

(and

(has_step ?x ?y)

(ready ?x ?e))))

(or

(not

(exists (?x)

(or

(requires ?y ?x)

(requires_one ?y ?x))))

(and

(exists (?x) (requires ?y ?x))

(not

(exists (?x)

(and

(requires ?y ?x)

(not (complete ?x ?e))))))

(exists (?x)

(and

(requires_one ?y ?x)

(complete ?x ?e)))))

:effect (ready ?y ?e))

(:action infer_complete_by_method

:parameters (?y - task ?e - environment)

:precondition (exists (?x)

(and

(has_goal ?e ?y)

(has_method ?y ?x)

(complete ?x ?e)))

:effect (complete ?y ?e))

(:action infer_complete_by_sub_env

:parameters (?y - task ?e - environment)
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:precondition (and

(ready ?y ?e)

(exists (?a)

(and

(complete ?y ?a)

(sub_env ?a ?e)

(has_goal ?a ?y))))

:effect (complete ?y ?e))

(:action infer_related

:parameters (?a - environment ?e - environment)

:precondition (or

(= ?a ?e)

(sub_env ?a ?e)

(sub_env ?e ?a)

(exists (?x)

(and

(related ?a ?x)

(related ?x ?e))))

:effect (related ?a ?e))

(:action infer_value

:parameters (?z - value ?y - task ?e - environment)

:precondition (exists (?i)

(and

(has_env ?i ?e)

(has_task ?i ?y)

(success ?i)

(has_value ?i ?z)))

:effect (value ?z ?y ?e))

(:action infer_complete_by_binding

:parameters (?x - task ?e - environment)

:precondition (and

(ready ?x ?e)

(exists (?y ?a)

(and

(binds ?x ?y)

(complete ?y ?a)

(related ?a ?e))))

:effect (complete ?x ?e))
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(:action infer_value_from_binding

:parameters (?z - value ?x - task ?e - environment)

:precondition (and

(ready ?x ?e)

(exists (?y ?a)

(and

(binds ?x ?y)

(value ?z ?y ?a)

(related ?a ?e))))

:effect (value ?z ?x ?e))

(:action infer_complete_from_constant

:parameters (?x - task ?e - environment)

:precondition (exists (?i ?y)

(and

(has_env ?i ?e)

(has_task ?i ?y)

(has_constant ?y ?x)))

:effect (and

(complete ?x ?e)

(value ?x ?x ?e)))

)

B.1 Sample Problems

A sample planning problem for the PDDL domain definition of the PROHOW model

is presented in listing B.2. Listing B.4 details a plan generated to solve this problem

by the Fast-Downward planner2 using the “LAMA 2011 configuration”. Listing B.3

details a plan generated using the same configuration but without the primitive tasks

extension.

Listing B.2: A PROHOW check-list defined as a PDDL problem.

(define (problem sample)

(:domain prohow)

(:objects

t a b r x - task

e ee - environment

ex1 ex2 ex3 - execution)

(:init

2http://www.fast-downward.org/ (accessed on 17/10/2017)
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(has_goal e t)

(requires t r)

(has_step t a) (has_step t b)

(has_method b x)

(primitive a) (primitive x) (primitive r))

(:goal (finished e)))

Listing B.3: A plan generated by the Fast-Downward planner to solve the problem de-

fined in Listing B.2 under the PDDL domain description of the PROHOW model without

the primitive task extension.

(infer_ready_by_requirements r e)

(accomplish_task r e ex3)

(infer_complete r e)

(infer_ready_by_requirements t e)

(accomplish_task t e ex2)

(infer_complete t e)

(infer_finished e)

Listing B.4: A plan generated by the Fast-Downward planner to solve the problem de-

fined in Listing B.2 under the PDDL domain description of the PROHOW model with the

primitive task extension.

(infer_ready_by_requirements r e)

(infer_ready_by_requirements x ee)

(instantiate_sub_env ee e b x)

(accomplish_task r e ex)

(infer_complete r e)

(accomplish_task x ee ex2)

(infer_ready_by_requirements t e)

(infer_ready_by_requirements a e)

(infer_ready_by_requirements b e)

(accomplish_task a e ex3)

(infer_complete x ee)

(infer_complete_by_method b ee)

(infer_complete_by_sub_env b e)

(infer_complete a e)

(infer_ready_by_requirements x e)

(infer_complete_by_steps t e)

(infer_finished e)

The problem defined in Listing B.5 demonstrates the use of bindings. This problem

is similar to the previous one, with the exception of a new requirement r2 of task x.
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Requirement r2 is not in the set of primitive tasks. However, it has a binding with task

r. The solution found to this problem and shown in Listing B.6 demonstrates how the

planner manages to reach the goal by correctly inferring that task r2 is complete after

completing task r.

Listing B.5: A PROHOW check-list containing bindings defined as a PDDL problem.

(define (problem sample)

(:domain prohow)

(:objects

t a b r x r2 - task

e ee - environment

ex1 ex2 ex3 - execution)

(:init

(has_goal e t)

(requires t r)

(has_step t a )

(has_step t b )

(has_method b x)

(requires x r2)

(binds r2 r)

(primitive x) (primitive r) (primitive a) )

(:goal (finished e) ))

Listing B.6: A plan generated by the Fast-Downward planner to solve the problem de-

fined in Listing B.5 under the PDDL domain description of the PROHOW model with the

primitive task extension.

(infer_ready_by_requirements r e)

(infer_ready_by_requirements r ee)

(instantiate_sub_env ee e b x)

(accomplish_task r e ex1)

(infer_ready_by_requirements r2 ee)

(infer_related e ee)

(infer_complete r e)

(infer_complete_by_binding r2 ee)

(infer_ready_by_requirements x ee)

(infer_ready_by_requirements t e)

(infer_ready_by_requirements a e)

(accomplish_task x ee ex3)

(infer_ready_by_requirements b e)

(accomplish_task a e ex2)

(infer_complete a e)
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(infer_complete x ee)

(infer_complete_by_method b ee)

(infer_complete_by_sub_env b e)

(infer_related ee ee)

(infer_complete_by_steps t e)

(infer_finished e)

To demonstrate the use of constants, a new action should be added to the model.

This action, defined in Listing B.7, is called instantiate executionpt, i,eq and it

allows to instantiate a new execution i of task t in environment e. The problem defined

in Listing B.8 requires the execution of a task c which is neither primitive nor decom-

posable into sub-tasks. Task c is defined as a constant of task x, and therefore the

planner can achieve the goal by instantiating an execution of x and then inferring task

c as complete. The solution found by the planner to this problem is given in Listing

B.9.

Listing B.7: A PDDL description of an action that instantiates new executions of tasks.

(:action instantiate_execution

:parameters (?t - task ?i - execution ?e - environment)

:precondition(and

(not

(exists (?x)

(has_task ?i ?x)))

(not

(exists (?x)

(has_env ?i ?x))))

:effect (and

(has_task ?i ?t)

(has_env ?i ?e)))

Listing B.8: A PROHOW check-list containing a constant, defined as a PDDL problem.

(define (problem sample)

(:domain prohow)

(:objects

t b x c - task

e ee - environment

ex1 ex2 ex3 - execution)

(:init

(has_goal e t)

(has_step t b )

(has_method b x)
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(requires x c)

(primitive x)

(has_constant x c))

(:goal (finished e) ))

Listing B.9: A plan generated by the Fast-Downward planner to solve the problem de-

fined in Listing B.8 under the PDDL domain description of the PROHOW model with the

primitive task extension.

(instantiate_execution x ex1 ee)

(infer_complete_from_constant c ee)

(infer_ready_by_requirements x ee)

(accomplish_task x ee ex2)

(accomplish_task x ee ex3)

(infer_ready_by_requirements t e)

(infer_ready_by_requirements b e)

(instantiate_sub_env ee e b x)

(infer_complete x ee)

(infer_complete_by_method b ee)

(infer_complete_by_sub_env b e)

(infer_complete_by_steps t e)

(infer_finished e)
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SPARQL Queries

C.1 Queries to Compute Statistics

Listing C.1: SPARQL query to count the number of main sets of instructions

PREFIX rdf: <http://www.w3.org/1999/02/22 -rdf-syntax -ns#>

SELECT (COUNT (DISTINCT ?main) AS ?number)

WHERE{

?main rdf:type <http://w3id.org/prohow#instruction_set > .

}

Listing C.2: SPARQL query to count the number tasks which have steps

PREFIX prohow: <http://w3id.org/prohow#>

SELECT (COUNT (DISTINCT ?main) AS ?number)

WHERE{

?main prohow:has_step ?s .

}

Listing C.3: SPARQL query to count the number of labelled requirements of the main

instructions sets

PREFIX prohow: <http://w3id.org/prohow#>

PREFIX rdf: <http://www.w3.org/1999/02/22 -rdf-syntax -ns#>

SELECT (COUNT (DISTINCT ?r) AS ?number)

WHERE{

?main rdf:type <http://w3id.org/prohow#instruction_set > .

?main prohow:requires ?r .

?r rdfs:label ?l .

}

215
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Listing C.4: SPARQL query to count the number of labelled steps

PREFIX prohow: <http://w3id.org/prohow#>

SELECT (COUNT (DISTINCT ?s) AS ?number)

WHERE{

?main prohow:has_step ?s .

?s rdfs:label ?l .

}

Listing C.5: SPARQL query to count the number of labelled methods

PREFIX prohow: <http://w3id.org/prohow#>

SELECT (COUNT (DISTINCT ?m) AS ?number)

WHERE{

?main prohow:has_method ?m .

?m rdfs:label ?l .

}

Listing C.6: SPARQL query to count the number of labelled entities

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT (COUNT (DISTINCT ?entity) AS ?number)

WHERE{

?entity rdfs:label ?l .

}

Listing C.7: SPARQL query to count the number of sets of instructions with multiple sets

of requirements.

PREFIX prohow: <http://w3id.org/prohow#>

PREFIX rdf: <http://www.w3.org/1999/02/22 -rdf-syntax -ns#>

SELECT (COUNT(distinct ?main) AS ?number)

WHERE {

?main rdf:type prohow:instruction_set .

?main prohow:requires ?r .

?r prohow:has_step ?x .

}

C.2 Queries Used in Algorithms

SPARQL queries can be defined to return sets of tasks. The SPARQL template defined

in Listing C.8 can be used to define a number of queries about a task t by replacing

the place-holder %SUBJ% by the URI of task t. In the resulting query, the place-holder

%REL% can then be replaced by the URI of a PROHOW relation to obtain one of several
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different functions, each returning a set of tasks. The following functions are defined

using symbol ÞÑ to denote the replacement of a place-holder by a URI.

• get stepsptq i f %REL% ÞÑ prohow:has_step

• get methodsptq i f %REL% ÞÑ prohow:has_method

• get requirementsptq i f %REL% ÞÑ prohow:requires

• get sufficient requirementsptq i f %REL% ÞÑ prohow:requires_one

If place-holder %SUBJ% is replaced by the URI of an environment e, then Template C.8

can be used to define the following functions.

• get super environmentspeq i f %REL% ÞÑ prohow:sub_environment_of

• get goalpeq i f %REL% ÞÑ prohow:has_goal

Listing C.8: SPARQL template to find the set of objects related with relation r from subject

s. Place-holder %SUBJ% must be replaced by the URI of s and place-holder %REL% with

the URI of r.

SELECT ?o

WHERE {

<%SUBJ%> <%REL%> ?o .

}

Query C.9 is the inverse of the previously mentioned one, and it can be used to

discover the following functions if the URI of t is replaced by the place-holder %OBJ%:

• get effectsptq i f %REL% ÞÑ prohow:has_method

• get super tasksptq i f %REL% ÞÑ prohow:has_step

Listing C.9: SPARQL template to find the set of subjects s related with relation r to object

o. Place-holder %OBJ% must be replaced by the URI of o and place-holder %REL% with

the URI of r.

SELECT ?s

WHERE {

?s <%REL%> <%OBJ%> .

}
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SPARQL query C.10 implements the function get task ex in envpt,eq by replac-

ing the URI of e to place-holder %ENV% and the URI of t to place-holder %TASK%.

This function returns one execution of task t in environment e if it exists.

Listing C.10: SPARQL template to find the set of tasks that have executions in environ-

ment e. Place-holder %ENV% must be replaced by the URI of e.

PREFIX prohow: <http://w3id.org/prohow#>

SELECT ?ex

WHERE {

?ex prohow:has_environment <%ENV%> .

?ex prohow:has_task <%TASK%> .

} LIMIT 1

SPARQL query C.11 implements the function get tasks in envpeq by replacing

the URI of e to place-holder %ENV%.

Listing C.11: SPARQL template to find the set of tasks that have executions in environ-

ment e. Place-holder %ENV% must be replaced by the URI of e.

PREFIX prohow: <http://w3id.org/prohow#>

SELECT ?task

WHERE {

?ex prohow:has_environment <%ENV%> .

?ex prohow:has_task ?task .

}

The function get completed tasks in envpeq is implemented by SPARQL query

C.12 by replacing the URI of e to place-holder %ENV%.

Listing C.12: SPARQL template to find the set of tasks which are complete in environ-

ment e. Place-holder %ENV% must be replaced by the URI of e.

PREFIX prohow: <http://w3id.org/prohow#>

SELECT ?task

WHERE {

?ex prohow:has_environment <%ENV%> .

?ex prohow:has_task ?task .

?ex prohow:has_result prohow:complete .

}

The function get sub environments in envpeq is implemented by SPARQL query

C.13 by replacing the URI of e to place-holder %ENV%.
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Listing C.13: SPARQL template to find the set of pairs t,a such that task t is scheduled

to be completed in sub-environments a of e. Place-holder %ENV% must be replaced by

the URI of e.

PREFIX prohow: <http://w3id.org/prohow#>

SELECT ?task ?env

WHERE {

?env prohow:sub_environment_of <%ENV%> .

?env prohow:has_goal ?task .

}

C.3 Update Queries Used in Algorithms

Databases are often dynamic objects which can constantly change. This is especially

true for databases recording the state of the execution of a process. Every time the state

of the execution changes, the database must change as well. The most simple change

that can affect an RDF dataset is the addition of a triple.

The SPARQL Update template C.14 inserts a triple ă s, p,o ą in the dataset if the

place-holders %S%, %P% and %O% are replaced, respectively, by the URIs of s, p

and o. This insertion of a triple defines the function assert tripleps, p,oq.

Listing C.14: SPARQL Update query to insert a triple.

INSERT DATA {

<%S%> <%P%> <%O%> .

}

The update databasepq function, that can be used to materialise inferred facts

into a PROHOW dataset, is defined by the sequential execution of the queries C.15,

C.16, C.17 and C.18.

Listing C.15: SPARQL Update query to declare tasks complete according to Formula 13.

PREFIX prohow: <http://w3id.org/prohow#>

INSERT {

?ex prohow:has_result prohow:complete .

}

WHERE {

?ex prohow:has_environment ?env .

?ex prohow:has_task ?task .

?env prohow:has_goal ?task .

?task prohow:has_method ?method .
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?m_ex prohow:has_environment ?env .

?m_ex prohow:has_task ?method .

?m_ex prohow:has_result prohow:complete .

}

Listing C.16: SPARQL Update query to declare tasks complete according to Formula 17.

PREFIX prohow: <http://w3id.org/prohow#>

INSERT {

?ex prohow:has_result prohow:complete .

}

WHERE {

?ex prohow:has_environment ?env .

?ex prohow:has_task ?task .

?sub_env prohow:sub_environment_of ?env .

?sub_env prohow:has_goal ?task .

?sub_ex prohow:has_environment ?sub_env .

?sub_ex prohow:has_task ?task .

?sub_ex prohow:has_result prohow:complete .

}

Listing C.17: SPARQL Update query to declare tasks complete according to Formula 12.

PREFIX prohow: <http://w3id.org/prohow#>

INSERT {

?ex prohow:has_result prohow:complete .

}

WHERE {

?ex prohow:has_environment ?env .

?ex prohow:has_task ?task .

?task prohow:has_step ?step .

MINUS {

?ex prohow:has_environment ?env .

?ex prohow:has_task ?task .

?task prohow:has_step ?s .

FILTER NOT EXISTS {

?exs prohow:has_task ?s .

?exs prohow:has_environment ?env .

?exs prohow:has_result prohow:complete .

}

}

}
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Listing C.18: SPARQL Update query to declare tasks complete according to Formula 19.

PREFIX prohow: <http://w3id.org/prohow#>

INSERT {

?ex prohow:has_result prohow:complete .

}

WHERE {

?ex prohow:has_environment ?env .

?ex prohow:has_task ?task .

?task prohow:binds_to ?binding .

?ex_b prohow:has_task ?binding .

?ex_b prohow:result prohow:complete .

?ex_b prohow:has_environment ?env_b .

?env_b (prohow:sub_environment_of |

ˆprohow:sub_environment_of)* ?env .

}
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Algorithms

This Chapter of the Appendix lists the algorithms that I implemented to computation-

ally solve the competency questions Q1 to Q8 defined in Section 4.7.3. These algo-

rithms, which will be listed in details later, are the following:

Q1 : get requirement setsptask xq returns a set of sets of tasks;

Q2 : get decomposition setsptask xq returns a set of sets of tasks;

Q3 : get tasks in envpenvironment eq returns a set of tasks;

Q4 : get completed tasks in envpenvironment eq returns a set of tasks;

Q5 : get ready tasks in envpenvironment eq returns a set of tasks;

Q6 : get sub environments in envpenvironment eq returns a set of pairs of tasks

and environments;

Q7 : get next tasks to accomplishpenvironment eq returns a set of tasks;

Q8 : create checklistsptask xq returns a set of lists of sets of tasks.

These algorithms make use of the following functions defined as SPARQL queries

in Section C.2 of the Appendix.

• get stepsptq

• get methodsptq

• get requirementsptq

222
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• get sufficient requirementsptq

• get super environmentspeq

• get goalpeq

• get effectsptq

• get super tasksptq

• get task ex in envpt,eq

• get tasks in envpeq

• get completed tasks in envpeq

• get sub environments in envpeq

In Section C.2 these functions are presented as SPARQL templates, namely SPARQL

queries with optional place-holders that need to be instantiated before the query can be

considered complete. Each query is identified as a unique function name that instanti-

ates the query and returns its results.

D.1 Algorithms to Query a PROHOW Dataset

In order to answer competency question Q1, Algorithm 1 retrieves the set of sets of

entities which are needed to declare a task x ready for execution.

Algorithm 1 An algorithm to solve competency question Q1.

1: procedure get requirement setspxq

2: Rand Ð get requirements(x)

3: Ror Ð get sufficient requirements(x)

4: Rsets Ð empty set of sets

5: if Rand contains at least one element then
6: Rsets add element Rand

7: for @r .r P Ror do
8: Rnew Ð empty set

9: Rnew add element r

10: Rsets add element Rnew

11: return Rsets
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Competency question Q2 can be answered by Algorithm 2, which retrieves the

set of sets of entities which can sufficiently decompose a task x into a different but

equivalent set of tasks.

Algorithm 2 An algorithm to solve competency question Q2.

1: procedure get decomposition setspxq

2: Dand Ð get steps(x)

3: Dor Ð get methods(x)

4: Dsets Ð empty set of sets

5: if Dand contains at least one element then
6: Dsets add element Dand

7: for @d .d P Dor do
8: Dnew Ð empty set

9: Dnew add element d

10: Dsets add element Dnew

11: return Dsets

Competency question Q3 and Q4 can be directly answered by a SPARQL query fol-

lowing the templates of Listings C.11 and C.12, respectively. Competency question

Q5 can be answered by Algorithm 3 and the utility Algorithms 4 and 5. Algorithm

3 returns the set of tasks in environment e which have all of their requirements com-

pleted. Algorithm 4 returns the boolean value True if task t is ready to be executed

in environment e, and False otherwise. Algorithm 5 returns the boolean value True if

environment e is active, and False otherwise.

Algorithm 3 An algorithm to solve competency question Q5.

1: procedure get ready tasks in envpeq

2: RÐ empty set

3: T Ð get tasks in envpeq

4: for @t . t P T do
5: if is task ready in envpt,eq then
6: R add element t

7: return R
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Algorithm 4 An algorithm to determine whether a task t is ready to be executed in an

environment e.
1: procedure is task ready in envpt,eq

2: if is environment activepeq ““ False then
3: return False

4: SÐ get super tasksptq

5: if S is not empty then
6: BÐ False

7: for s P S do
8: if B“False then
9: BÐ is task ready in envps,eq

10: if B“False then
11: return False

12: Rall Ð get requirement setspxq

13: if Rall is empty then
14: return True

15: CÐ get completed tasks in envpeq

16: for @R .R P Rall do
17: if R PC then
18: return True

19: return False

Algorithm 5 An algorithm to determine whether an environment a is active.

1: procedure is environment activepeq

2: Esuper Ð get super environmentspeq

3: if Esuper is empty then
4: return True

5: gÐ get goalpeq

6: for a P Esuper do
7: if is task ready in envpg,aq “ True then
8: return True

9: return False

Competency question Q6 can be directly answered by a SPARQL query using the

template of Listings C.13. Competency question Q7 can be answered by Algorithm 6,
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to discover the set of tasks within an environment e which can be accomplished next

to progress toward the completion of e. Algorithm 7, using Algorithm 8, answers the

recursive version of this question by considering also the sub-environments of e. This

last algorithm returns a map containing a set of related environments as keys. Each

one of these environments maps to the set of tasks that can be accomplished in that

environment to progress its execution.

Algorithm 6 An algorithm to solve competency question Q7 without considering sub-

environments.
1: procedure get next tasks to accomplishpeq

2: RÐ get ready tasks in envpeq

3: CÐ get completed tasks in envpeq

4: R C Ð RzC (elements in R not in C)

5: return R C

Algorithm 7 An algorithm to solve competency question Q7 considering sub-

environments.
1: procedure get next tasks to accomplish recursivepeq

2: AÐ empty map

3: expand map with tasks to accomplish in subenvpe,Aq

4: return A

Algorithm 8 Recursive part of algorithm 7.

1: procedure expand map with tasks to accomplish in subenvpe,Aq

2: Ares Ð get next tasks to accomplishpeq

3: E Ð get sub environments in envpeq

4: for @s .s P E do
5: t Ð (first) task element of pair s

6: if t P Ares then
7: aÐ (second) environment element of pair s

8: expand map with tasks to accomplish in subenvpa,Aq

D.2 Algorithms to Generate PROHOW Check-Lists

To answer question Q8, I will show how all the non-redundant check-lists to achieve a

given goal can be procedurally generated. In this context, a non-redundant check-list
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is a check-list such that the removal of any of its tasks either prevents the goal to be

achieved, or it forces a super-task to be completed instead of one of its sub-tasks. While

the possibility of generating all the non-redundant check-lists can be useful for simple

task networks, large task networks comprising many different levels of decomposition

and choice points might make this generation effort computationally inefficient. In

this last case, particular rules and heuristics can be implemented to discard unwanted

check-list configurations.

In these algorithms, an unordered check-list is uniquely identified by the set of tasks

it contains. Two check-lists containing the same set of tasks can be said to be equiva-

lent. For example, the set ta,bumight represent the a check-list containing tasks a and

b to complete task t. This represents the logical formula t Ð a^ b. Multiple options

are represented by a set of sets, or Alternative Sets (AS). For example, a task t might

be decomposable by any sets of tasks in the AS tta,bu,ta,c,duu. This represents the

logical formula t Ð pa^bq_ pa^ c^dq. AS represent options in disjunctive normal

form (DNF). For computational purposes, it is convenient to be able to normalise the

disjunction or the conjunction of two AS into a single AS. This is equivalent to per-

forming a normalisation of their logical interpretation into DNF. The disjunction of

two AS A and B normalised in DNF is simply the union of the two sets: AYB. The

conjunction of two AS A and B can be normalised in DNF by Algorithm 9 using the

distributive rule of replacement X ^pY _Zq ðñ pX ^Y q_ pX ^Zq. This algorithm

also exploits the fact that computational sets do not contain duplicate elements and that

sets containing the same set of elements are considered equivalent.

Algorithm 9 An algorithm to merge the conjunction of two AS sets A and B into a

single AS.

1: procedure merge pair of ASpA,Bq

2: if A is empty then
3: return B

4: if B is empty then
5: return A

6: M Ð empty set

7: for @Aalternative .Aalternative P A do
8: for @Balternative .Balternative P B do
9: M add element AalternativeYBalternative

10: return M
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Algorithm 10 answers questions Q8 by computing all the possible sets of tasks that

would enable a task t to be ready for execution, and all the possible step decomposition

of the tasks using Formula 12 and 13. The resulting sets of tasks are returned in a valid

order (or partial) order unless an exception is raised. A valid order of a set of task is

an order that does not violate the dependencies of its task. An exception can be raised

by Algorithm 12 if a dependency deadlock has been discovered and no valid check-list

can be generated. If no exception is raised, any list in the set returned by Algorithm 10

can be considered a valid answer to question Q8.

For example, a task t: “prepare milk coffee”, might require either the ingredient

a: “instant milk coffee powder” or both the ingredients b: “instant coffee powder”

and c: “milk”. In this example, Algorithm 10 would return the set of lists of sets

trtau,ttus, rtb,cu,ttusu, which can be translated into either a check-list where task a

precedes task t, or a check-list where both tasks b and c, in any order, precede task t.

Decompositions of tasks using Formula 17 are not included in Algorithm 10 as

they do not change a check-list by itself. More specifically, Formula 17 allows a task

in a given check-list to be decomposed by one of its methods in a different but related

check-list. In a check-list e, the decomposition of a task t with method m can be repre-

sented by defining another check-list m, sub-environment of e, generated by algorithm

create checklistsptq and containing method m.
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Algorithm 10 An algorithm to get a set of check-lists to answer question Q8 without

considering task decomposition.

1: procedure create checklistsptq

2: U Ð expand checklist requirementspttu,tuq

3: Umethods Ð empty set of sets

4: M Ð get methodsptq

5: for m PM do
6: for S PU do
7: Sm Ð empty set

8: Sm add all entities in S

9: Sm add entity m

10: Sm all Ð expand checklist requirementspSm,Sq

11: Sm all add all in expand checklist stepspSm all,ttuq

12: Umethods add all sets in Sm all

13: U ÐUY expand checklist stepspU,tuqYUmethods

14: OÐ empty set of lists of sets

15: for S PU do
16: O add element order task setpSq

17: return O
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Algorithm 11 An algorithm to expand the requirements of the set of tasks S of a check-

list excluding the tasks in A.

1: procedure expand checklist requirementspS,Aq

2: Anew Ð empty set

3: Anew add all elements in A

4: Snew Ð empty set

5: Snew add all elements in S

6: T Ð empty set of sets

7: T Ð add element Snew

8: for @t . t P Snew do
9: if t R Anew then

10: RÐ get requirement setsptq

11: if R is not empty then
12: T Ð merge pair of ASpT,Rq

13: Anew add all elements in S

14: for @P .P P T do
15: if  PĂ Anew then
16: Pexpanded Ð expand checklist requirementspP,Anewq

17: T Ð T remove element P

18: T Ð T YPexpanded

19: return T
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Algorithm 12 An algorithm to order a set of tasks S.

1: procedure order task setpSq

2: LÐ empty list

3: Sle f t Ð empty set

4: Sle f t add all entities in S

5: while Sle f t is not empty do
6: AÐ empty set

7: A add all entities in L

8: OÐ empty set

9: Ois empty Ð True

10: for t P Sle f t do
11: Rsatis f ied Ð False

12: RÐ get requirement setsptq

13: if R is empty then
14: Rsatis f ied Ð True

15: else
16: for r P R do
17: if r Ă A then
18: Rsatis f ied Ð True

19: if Rsatis f ied “ True then
20: O add element t

21: Ois empty Ð False

22: if Ois empty “ True then
23: throw deadlock exception

24: L append element O

25: Sle f t Ð Sle f tzO

26: return L

Algorithm 13 expands a SA with all possible decompositions of its tasks into sub-

steps. This algorithm iterates over a set of tasks trying to decompose them into steps.

When new steps Tsteps of a task are found they are included in a new set of task SpreY

Tsteps. This new set is then expanded with all the requirements of the new tasks using

Algorithm 11.
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Algorithm 13 An algorithm to expand a check-list with all the possible step decompo-

sitions, except for the decompositions of the tasks in K.

1: procedure expand checklist stepspSprevious all,Kq

2: Snew all Ð empty set of sets

3: for Spre P Sprevious all do
4: for t P Spre do
5: if t R K then
6: Tsteps Ð get stepsptq

7: if Tsteps is not empty ^ Tsteps Ă Spre then
8: Snew exp Ð expand checklist requirementspSpreYTsteps,Spreq

9: Snew all add all elements in Snew exp

10: Snew all add all elements in expand checklist stepspSnew exp,KYttuq

11: return Snew all

D.3 Algorithms to Materialise and Validate Algorithms

These algorithms make use of the assert tripleps, p,oq and update databasepq

functions defined in Section C.3 of the Appendix as SPARQL Update queries.

During the execution of a process, it might be possible to infer whether a certain

task has been completed by completing all of its steps or one of its methods. For

example, update queries C.15, C.16, C.17 and C.18 assert executions as complete if

the completion of their task can be inferred from, respectively, Formulas 13, 17, 12

and 19. When such inference is made, it is useful to record it in the knowledge base to

avoid the overhead of re-computing such inferences every time a query is made. The

algorithms given in this section assume the materialisation of such inferred facts as

explicit statements in the knowledge base.

Whenever the RDF database is modified, an update operation update_databasepq,

consisting of the queries C.15, C.16, C.17 and C.18 needs to be performed before any

other query is computed. If these queries result in a modification of the database, or

more specifically when new triples are added, a subsequent update needs to be per-

formed. Multiple iterations of the update procedure might be necessary because each

of those queries only apply the logical inferences to the statements in the dataset, and

not to the inferred statements as well. In order to determine whether the update pro-

cedure has modified the database multiple approaches are possible. For example, it is

possible to count the number of triples in the database before and after the modifica-
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tions.

Each set of tasks S generated by calling the function create checklistsptq that

I previously defined can be represented as a PROHOW check-list (or environment) e

in RDF using function materialise checklistpS, tq defined in Algorithm 14. This

function returns the URI of e upon completion, and it makes use of the function mint_

URIpq, a function that mints a new URI. This function will not be defined formally as

it can be implemented in many different ways which depend on the context where it is

to be used. One possible approach to minting URIs was described in Section 2.1.1.

Algorithm 14 An algorithm to materialise a new check-list, defined as a set of tasks,

or a list of sets of tasks S with goal t.

1: procedure materialise checklistpS, tq

2: eÐ mint URIpq

3: assert triplepe,“prohow:has goal”, tq

4: if S is a list of sets then
5: SÐ union of all sets in S

6: for x P S do
7: exÐ mint URIpq

8: assert triplepex,“prohow:has environment”,eq

9: assert triplepex,“’prohow:has task”,xq

10: return e

The execution of a check-list e with goal t generated by Algorithm 10 and in-

stantiated by Algorithm 14 can be simulated by Algorithm 15 to verify whether it is

feasible, namely if it does not violate dependency constraints, and whether it does actu-

ally accomplish goal t. This algorithm makes use of the function update databasepq,

previously defined as the subsequent call of the SPARQL Update queries C.15, C.16,

C.17 and C.18. This update function ensures that tasks are declared complete in the

environment as soon as they can be inferred to be so.
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Algorithm 15 An algorithm to validate a check-list e having a list of tasks L and goal

t.
1: procedure validate checklistpL,e, tq

2: for S P L do
3: for x P S do
4: if is task ready in envpx,eq “ False then
5: return False

6: exÐ get task ex in envpx,eq

7: if ex is not null then
8: assert triplepex,“prohow:has result”,“prohow:complete”q

9: update databasepq

10: CÐ get completed tasks in environmentpeq

11: if t PC then
12: return True

13: else
14: return False

Algorithm 15 can be easily extended into Algorithm 16 to incorporate the concept

of a primitive tasks set (PTS). Inspired by the notion of primitive tasks in the AP field,

a PTS represents the basic capabilities of an agent (or multiple agents), or more specif-

ically the set of tasks that the agent can directly accomplish without decomposing tasks

into sub-tasks. Given a PTS A, Algorithm 16 returns true only if the analysed check-list

can be completed by only accomplishing tasks in A. Although more computationally

efficient algorithms are possible, the validation of Algorithm 16 can be immediately

applied to all the possible check-lists computed by Algorithm 10 to select only those,

if any, that an agent could complete.
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Algorithm 16 An algorithm to validate whether a primitive task set A is sufficient to

complete a check-list e having a list of tasks L and goal t.

1: procedure validate checklist with primitivespA,L,e, tq

2: for S P L do
3: for x P SXA do
4: if is task ready in envpx,eq “ True then
5: exÐ get task ex in envpx,eq

6: if ex is not null then
7: assert triplepex,“prohow:has result”,“prohow:complete”q

8: update databasepq

9: CÐ get completed tasks in environmentpeq

10: if t PC then
11: return True

12: else
13: return False
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Linguistic Resources

The chapter provides additional details on the resources used by the interlinking system

presented in Chapter 6.

E.1 Units of Measure

These units of measure have been generated by combining standard lists of units of

measure with additional units frequently found in the dataset. For example, the word

“copy” is not a standard unit of measure, although it is commonly used to define a

relative measure.

• tablespoon

• group

• splash

• teaspoon

• amount

• cup

• punnet

• jar

• bucket

• m

• bar

• bag

• variety

• gallon

• copy

• yard

• pair

• ft

• grade

• bunch

• sheet

• box

• feet

• foot

• source

• slice

• pinch

• lot

• copies

• number

• can

• glass

• ml

• bottle

• kind

• piece

• tsp

• g

• capful

• tbsp

236
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• ball

• packet

• inch

• inches

• oz

• quart

• lbs

• ounce

• drop

• liter

• l

E.2 Creation Verbs

• make

• build

• create

• assemble

• cook

• prepare

• do

• bake

• brew

• install

• find

• calculate

• compute

• setup

• construct

• generate

• produce

• become

• get

• organize

• perform

• catch

• capture

• buy

• acquire

• purchase

• obtain

• grow

• harvest

E.3 Type Preserving Adjectives

• ground

• melted

• fresh

• sliced

• grated

• diced
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