
Automatic update of

vague ontological concepts

Paolo Pareti
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

August 2011

Abstract

Ontologies can be a powerful tool to structure knowledge and they are a technology

which is in the focus of extensive research. Updating the contents of an ontology or im-

proving its interoperability with other ontologies are important but difficult processes

[6]. One of the reasons of these difficulties comes from vague concepts [28], which

can cause inconsistencies or problems of interoperability with other ontologies. This

work adopts a novel perspective on vagueness that does not focus on capturing the

degrees of uncertainty of vague concepts (like previous approaches [22]) but instead

models them as flexible concepts capable of evolving and adapting to changes. These

changes are usually induced by ontological inconsistencies. Concerning inconsisten-

cies, very little work can be found in the literature that proposes different solutions to

solve them rather than removing axioms. In particular, it was not possible to find any

work that considered numerical restrictions in the definition of ontological concepts as

a possible source of inconsistencies. The work that I am here presenting makes use of

the first framework to provide an automatic solution to detect inconsistencies caused

by cardinality restrictions and data range restrictions for OWL 2 ontologies [29]. The

novelty of this approach allows to solve those inconsistencies by modifying internal

parameters of axioms without removing any axiom or any part of it. Moreover, the

internal parameters of the axioms can be adjusted even when no inconsistency arises.

This approach could find applications in the Ontology Change [10] and in the On-

tology Alignment [7] fields as it can automatically compute ontological changes that

are intended to reduce the misalignment with an external set of ontological data (e.g.

another ontology).

i

Acknowledgements

I would like thank my supervisor, Ewan Klein, to whom I am grateful for the support

and collaboration on this project. Special thanks go also to my family and friends, and

to Camille, for being a constant and helpful presence throughout this year.

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Paolo Pareti)

iii

Contents

1 Introduction 1
1.1 Benefits of automatic updates in ontologies 1

1.2 The problem of vagueness in ontologies 2

1.3 Structure of the dissertation . 3

2 Background 4
2.1 The ontology used and its semantics 4

2.2 A definition of vagueness . 5

2.3 Ontology Change . 7

2.4 Ontology Alignment . 8

2.5 Related work . 9

3 System architecture 11
3.1 The inputs taken by the system . 11

3.2 Overview of the system architecture 12

3.3 The validation phase . 13

3.3.1 Overview of the validation phase 13

3.3.2 Generating feedback for adaptors found to be incorrect 13

3.3.3 Generating feedback from adaptors found to be correct 17

3.4 The learning phase . 18

3.4.1 Overview of the learning phase 18

3.4.2 Learning by considering the evidence that supports a change . 18

3.5 The update phase . 21

4 Considerations about the framework 22
4.1 Open and Closed World Assumptions 22

4.1.1 Difference between Open and Closed World Assumption . . . 22

4.1.2 Consequences of OWA for cardinality restrictions 23

iv

4.2 Interconnected vague concepts . 24

4.3 Single modification of adaptors . 25

5 Implementation 27
5.1 The ontology used in the simulation 27

5.2 Overview of the program used . 28

5.2.1 The data types used: AdaptorFeedback and AdaptorUpdate . . 29

5.3 The implementation of a VoValidator object 30

5.3.1 The main functionality: computing the feedback 30

5.3.2 Computing feedback from a set of inconsistent axioms 32

5.3.3 Computing feedback from a set of consistent axioms 33

5.4 The implementation of a VoLearner object 34

5.5 The implementation of a VoUpdater object 35

6 Evaluation 37
6.1 Evaluation with artificial data . 37

6.1.1 An ontology about persons and their ages 37

6.1.2 Learning the threshold between adults and minors 38

6.1.3 Learning the correct value for a cardinality restriction 40

6.2 Evaluation with web data . 42

6.2.1 An ontology about places and distances 42

6.2.2 The training axioms generated using web data 44

6.2.3 The results of the simulation 45

6.2.4 The correct values for the adaptors 47

6.2.5 Extracting feedback about correct adaptors 49

6.3 Note on the computational complexity 49

7 Conclusion 51
7.1 Concluding remarks . 51

7.2 Future work . 52

A List of cities used in the simulation 54

B Computing feedback from a consistent ontology 55

C Results of extracting feedback from correct adaptors 57

v

Bibliography 59

vi

List of Figures

3.1 Schema of the system architecture 12

5.1 UML class diagram of the main classes of the java program 28

6.1 Plot of the values of adaptor a1 across 40 iterations of the system (no

noise). The red squares indicate the value computed by the system, the

blue circles indicate the correct value for that iteration. 38

6.2 Plot of the values of adaptor a1 across 40 iterations of the system (with

noise). The red squares indicate the value computed by the system, the

blue circles indicate the correct value for that iteration. 39

6.3 Plot of the values of adaptor a1 across 40 iterations of the system (with

noise and using memory in the learning phase). The red squares in-

dicate the value computed by the system, the blue circles indicate the

correct value for that iteration. 40

6.4 Plot of the values of adaptor a2 across 40 iterations of the system. The

red squares indicate the value computed by the system, the blue circles

indicate the correct value for that iteration. 41

6.5 Plot of the values of adaptor d across 30 iterations of the system . . . 46

6.6 Plot of the values of adaptor c across 30 iterations of the system . . . 46

C.1 Plot of the values of adaptor d across 30 iterations of the system (ex-

tracting also the feedback about correct adaptors) 58

C.2 Plot of the values of adaptor c across 30 iterations of the system (ex-

tracting also the feedback about correct adaptors) 58

vii

List of Algorithms

3.1 Algorithm to compute all the possible values to consider for an adaptor

X and a set of inconsistent axioms S 15

5.1 Algorithm to compute feedback from the training axioms 31

5.2 Algorithm to compute feedback from a set of inconsistent axioms . . 32

B.1 Algorithm to compute feedback from a consistent ontology 55

B.2 Algorithm to compute feedback for a particular class assertion in a

consistent ontology . 56

viii

List of Tables

3.1 Examples of feedback for an adaptor X 14

6.1 Statistics about the evolution of adaptors d and c 47

C.1 Statistics about the evolution of adaptors d and c 57

ix

Chapter 1

Introduction

1.1 Benefits of automatic updates in ontologies

In computer science, an ontology is a structured representation of knowledge. Tom

Gruber’s entry in [21] provides an extended definition of this concept which includes:

“an ontology defines a set of representational primitives with which to model a do-

main of knowledge or discourse. The representational primitives are typically classes

(or sets), attributes (or properties), and relationships (or relations among class mem-

bers)”. After defining the aforementioned primitives, the ontology can be populated

by concepts.

A considerable amount of research is recently focusing on areas such as Ontology

Change [10] and Ontology Alignment [7]. The main issues addressed by those areas

are the following. Concerning Ontology Change, the central problem is how to mod-

ify ontologies, possibly automatically or semi-automatically, when there is a need for

change. The field of Ontology Alignment instead, focuses on the problem of providing

interoperability between different ontologies in an open context. In fact, if a close con-

text is not assumed, there is a concrete risk that different ontologies will be encoded

in different languages or that they will use a different vocabulary to refer to the same

concepts. Being able to update an ontology when there is the need for it to change, and

being able to communicate with other different ontologies are important requirements

for many systems. The Semantic Web [24] is an example of an open and dynamic

technology where advances (and especially a better automation) in Ontology Change

and Ontology Alignment can bring significant benefits.

The framework that I am presenting in this dissertation can be seen as an Ontology

Change tool. In fact it can update parts of an ontology automatically maintaining

1

Chapter 1. Introduction 2

the consistency of the ontology. The changes resulting from this update will aim to

achieve ontological alignment with an additional set of ontological information. If this

set is another ontology, the updates will improve the ontological alignment between

the ontologies.

The update will only affect the information contained in an ontology and not its

signature. For this reason, it is assumed that the additional set of ontological informa-

tion used to compute the update is encoded using the same ontological language of the

ontology to update. More precisely I will focus on OWL ontologies and the additional

set of ontological information will consist of a set of OWL axioms.

1.2 The problem of vagueness in ontologies

The interpretation of an ontology is dependent on the knowledge representation lan-

guage used to describe it and on its logical formalism. In order for the interpretation

to be meaningful, it should not entail logical inconsistencies. When inconsistencies

occur (e.g. if some axiom contradicts another) then it is usually not possible to be sure

of the soundness of any information asserted in the ontology or inferred from it.

Vague concepts are potential sources of inconsistencies in an ontology, because

they lack a precise definition. If a concept can be precisely defined, then it cannot be

regarded as vague. As an example, let us consider the vague concept of tall. Ontology

O could consider tall only persons that are at least 1.70 meters tall. Now, imagine

adding to O the assertion that an individual i, which has a height of 1.68 meters, is tall.

This assertion will cause O to become inconsistent because i is labeled as tall even

though according to the definition of tall, it should not be labeled as such. To solve

this inconsistency automatically (without being examined by a human expert), stan-

dard Ontology Repair techniques [3] would propose to delete either some information

about this new individual (for example his/her height), or the definition of the concept

tall. However, if parts of an ontology are removed to solve an inconsistency, some

information will be lost. The height of i, the assertion that i is tall, or the definition

of tall are examples of such pieces of information that could be discarded to repair the

ontology O.

My thesis is that it is possible to extract information about an inconsistency in an

ontology O and use it to update the definitions of the vague concepts in O. These up-

dates are aimed to solve the inconsistency, and they can be performed without remov-

ing any part of the ontology (therefore without losing any information). For example, if

Chapter 1. Introduction 3

the information about the tall person of 1.68 meters comes from a trustworthy source,

we might want to extend our definition of tall to all the persons that are at least 1.68

meters tall. This change would solve the inconsistency without removing any informa-

tion of the ontology (besides the value 1.70 in the definition of the concept tall which

will be substituted by the value 1.68). Instead, if we do not have complete trust of the

source that stated that a 1.68 meters tall person is tall, we can still use this information

to realise that our definition of tall was too restrictive and we could perhaps extend it

to everybody who is at least 1.69 meters tall. In this last case the inconsistency is not

solved, and to solve it we will still have to remove (and therefore to lose) some infor-

mation. The advantage, in this last case, is that the inconsistency was used to adjust

automatically the definition of the vague concept tall, hopefully improving it.

1.3 Structure of the dissertation

Having discussed the motivation that underlies this research, the following chapter

(chapter 2) provides a more detailed description of the problems that will be addressed.

It will include the relevant background information and the related work that it was

possible to find in the literature. Chapter 3 presents the design of a framework to per-

form automatic updates of ontological concepts. Important considerations about this

framework will then be discussed in chapter 4. The description of an implementation

of this framework will follow in chapter 5. The evaluation of this implementation is

then presented and discussed in chapter 6. In chapter 7 the results of this research will

be summarised along with a discussion about possible future research directions.

Chapter 2

Background

2.1 The ontology used and its semantics

Before providing a definition of what a vague concept is, it is necessary to clarify

the use that will be made here of the term “concept”. The approach described in this

dissertation is focusing on OWL 2 ontologies [29]. Therefore the logical formalism

that will be used here is Description Logic [2] as its semantics are used to assign

meaning to OWL ontologies. The term “concept” will then be used according to its

definition in Description Logic.

In OWL ontologies, concepts are represented as classes. The instances of a con-

cept are called individuals, and they can be expressed as OWL objects. In Description

Logic, roles define relations between individuals and data types, or other individuals,

and they are represented as OWL Properties. More precisely, relationships between

individuals and data types can be represented as OWL Data Properties. Relationships

between individuals and other individuals can be represented as OWL Object Proper-

ties. The knowledge contained in a particular ontology is encoded as a set of ontologi-

cal axioms. The term “axiom”, in this context, refers to a statement that is assumed to

be true by the ontology. Class definitions and property assertions are examples of such

axioms.

Given an ontology O, being C the set of concepts defined in O, an interpretation

I =
〈
∆

I, ·I
〉

can be defined by a non empty set ∆
I (called domain) and a function ·I

which maps every concept c ∈C to a subset of the domain cI ⊆ ∆
I . This subset cI is

called the extension of c under interpretation I and it represents the set of individuals

that are instances of concept c. An individual i is said to be an instance of concept

c (or equivalently a member of class c) under interpretation I if and only if i ∈ cI .

4

Chapter 2. Background 5

We can call cI the positive extension of c. Given ¬c as the complement of concept

c, we can call (¬c)I ⊆ ∆
I the negative extension of c. In order for the interpretation

to be logically consistent the positive and negative extensions of a concept have to be

disjoint (cI ∩ (¬c)I = /0).

2.2 A definition of vagueness

Being a necessary characteristic of natural language, vagueness also permeates knowl-

edge representations formalisms, such as ontologies [28]. Typical examples of vague-

ness are concepts such as many or tall. However, even well-defined concepts such as

the units of measure can be, to some extent, vague.

As described in the previous section, the formal meaning of a concept c can be

defined by its positive and negative extensions
[
cI,(¬c)I] under an interpretation I.

What is the meaning of a vague concept? Two different interpretations of this meaning

will now be described:

• PARTIAL INTERPRETATION [1]. Under a partial interpretation, it is possible for

an individual i not belong either to the positive and the negative extension of a

vague concept c (i /∈ cI ∪ (¬c)I), even assuming a complete knowledge about the

instance i. For example, an individual i, which is 1.70 meters tall, might not be

regarded either as tall or as ¬tall, despite the fact that his/her height is known.

Under this interpretation, given an assertion a that states that an individual i is

an instance of concept c, then a plausible reasoning processes could give to the

following formulas a ∨¬a and a ∧¬a the same undefined truth value. Moreover,

the formula a ∨¬a can not be regarded as a tautology.

• SUPERVALUATION [9]. A partial interpretation can be made more precise by ex-

tending it to a supervaluation. In a supervaluation, vague concepts are precisely

delineated by sharp cut-off points making them crisp concepts. Given sufficient

information, every instance i should be considered a member of the positive ex-

tension of a vague concept c or of its negative extension: ∀i ∈ ∆
I. i ∈ cI ∪ (¬c)I .

If i is found not to belong either to the positive and the negative extension of

a vague concept c, then this is due to lack of information in the ontology. For

example, if the height of an individual i is not known, it might not be possible to

classify i as a tall or ¬tall person. However, if the height h of an individual i is

known, then a possible delineation for the vague concept of tall could interpret

Chapter 2. Background 6

individual i as an instance of concept tall if h > X and as an instance of concept

¬tall otherwise. Given an assertion a that states that an individual i is an instance

of concept c, the formula a ∨¬a is a tautology in a supervaluation.

In this dissertation vague concepts are defined as concepts that will receive a total in-

terpretation that can be considered as a supervaluation dependent on a delineation δ.

A vague concept differs from a crisp concept in the fact that there could be multiple

admissible delineations for it. The meaning of a vague concept is therefore dependent

on the delineation used to define it (as a different delineation might result in a differ-

ent interpretation of its positive and negative extensions) and this delineation can be

subject to changes. The delineation δ of a vague concept used in an ontology O can

change into a different delineation δ′ as a result of an update of the ontology or as an

alignment with an another ontology O′.

But how is it possible to compute a delineation for a vague concept? The frame-

work presented in this dissertation uses the approach of vagueness as ignorance [5].

This approach can be interpreted in the following way. If we had to state if a number

of individuals are instances of a vague concept, or of its complement (excluding any

third possibility), we will end up with a total evaluation of those individuals for this

vague concept. At this point it is possible to compute a delineation δ that would result

in this same total evaluation (or at least an approximation of it) under a supervaluation

interpretation.

Using a sharp boundary to define the meaning of a vague concept results in a sim-

ple and practical model of vagueness. In Informatics, this could often be desirable.

In fact, while the meaning of a vague concept can be subject to revision over time,

an application might be interested in having available a precise definition of it. For

example, the application might be asked to decide if an individual is an instance of a

vague concept or not, without considering a third possibility of undecidability.

The first step in defining a vague concept is choosing how to represent the delin-

eation that should model its vagueness. This delineation will be dependent on a number

of parameters. To define the vague concept of tall, for example, we could use the height

of an individual as one of such parameters. The delineation of a vague concept will

then consist of a set of restrictions over those parameters. For example, a person could

be considered tall if his/her height is above 1.70 meters. If the value “1.70” is changed

to another value, a different delineation for the concept tall is found. In general, I will

use the term “adaptor” to refer to one of such values that define the delineation of a

vague concept. Different delineations for a vague concept will be computed by chang-

Chapter 2. Background 7

ing the values of such adaptors. For example, the vague concept of tall can be defined

as the set of persons taller than X meters. In this example the symbol X represents an

adaptor. Changing the value associated with X will change the positive and negative

extensions of the vague concept tall.

Adaptors will be identified in OWL ontologies using special labels. More specifi-

cally, if a value v used in axiom A is labeled with an unique identifier associated with

adaptor X , then it is possible to say that X is currently holding the value v and that the

axiom A is dependent on the adaptor X . When the value of adaptor X will be required

to change to a new value z, then the value v in axiom A will be substituted with the new

value z. If multiple axioms of an ontology are dependent on adaptor X , then all their

internal values associated with X will change accordingly. The cardinality of OWL

Properties, and the data range of OWL Data Properties are the parameters that can be

restricted using a value associated with an adaptor. Therefore, these are the parameters

that can be used in the delineation of a vague concept.

2.3 Ontology Change

It is desirable that an ontology could change over time to adapt to changes in the

environment. Assuming that an ontology will never change is often unrealistic. In fact

we might want to add or to remove some content of the ontology, we might want to

correct mistakes, or to update some of its content which is no longer correct. Changing

an ontology is also desirable to update vague concepts because vague concepts, by

definition, cannot be formulated precisely once and for all. For this reason the ontology

might be required to change to adjust their definition when they are found to be wrong

or imprecise.

Work in this area generally falls under the name of Ontology Change or Ontology

Evolution [10]. Two of the major issues in this area are the following. The first one is

how to automate the evolution process [31]. In fact, manual updates might be too im-

practical if ontologies are large or if the updates need to be frequent. The second one,

tightly connected to the first one, is how to make sure that the evolved ontology is still

consistent [19]. The changes that an ontology is required to adopt might be incom-

patible with other axioms already present in the ontology thus making the ontology

inconsistent.

A few solutions have been proposed to avoid the problem of inconsistencies for

evolving ontologies but all of them present some disadvantages. A possibility is to

Chapter 2. Background 8

develop strategies to reason with inconsistencies. This process however, is hard to

automate and it can be more time consuming than traditional reasoning processes. An

example of such approach can be found in [23]. Another solution is to restrict the

possible updates only to those that will preserve consistency, as proposed in [12]. This

kind of solution, nevertheless, will deeply reduce the possibilities of evolution for an

ontology as many kinds of changes will not be allowed.

If inconsistencies can occur, then it might be necessary to adopt a system to restore

the consistency of an inconsistent ontology, for example using Ontology Repair tools.

One possibility to automate an Ontology Repair system is to remove some of the ax-

ioms that cause the inconsistency [11]. However the axioms removed might roll back

the new changes that were introduced in the ontology or delete part of the ontology

that should have been preserved.

A concrete ontological change of an ontology is usually considered the process of

adding or removing parts of it (for example axioms). One possibility to automate the

process of Ontology Change can be achieved by adding new axioms to an ontology

and then, if the extended ontology is inconsistent, the consistency is restored by re-

moving some of its parts which are responsible for the inconsistency. However if these

approaches are used to change an ontology automatically, there is no guarantee on how

much ontological information will be lost while removing axioms, and which and how

many of the axioms of the ontology will survive the change.

Unlike most of the Ontology Changes approaches proposed in the literature, which

rely on removing axioms to solve the inconsistency problem, the system that is pre-

sented in this dissertation can modify axioms just by changing their internal param-

eters. An advantage of such a system is that it can be used to modify an ontology

automatically, as many times as it is required, maintaining its consistency and making

sure that no axiom (or part of axiom) is deleted in the process.

2.4 Ontology Alignment

Ontologies could be required to interact with other ontologies or with other semantic

data in an open environment (for example, in the Semantic Web). In this setting the

main unsolved problem that arises is how to make two different ontologies understand

each other. In fact, in order to interact successfully, two ontologies should share a

common vocabulary. If they are not explicitly adhering to the same semantic standards

then they could differ at various levels. For example they could be written in two

Chapter 2. Background 9

different ontological languages, or they could represent the same concepts in different

ways.

At a syntactic level, the same concept could be named in different ways. For exam-

ple an individual could be classified as a “Person” in one ontology and as a “Human”

in another. To improve the interoperability between ontologies, Ontology Mapping [7]

tools aim to find a mapping between concepts such that two concepts will be mapped

together if they have the same semantic meaning regardless their name, which could

differ.

At a semantic level, two different concepts could be named in the same way by

two different ontologies. This is particularly likely for vague concepts. The concept of

Adult for example, though it might have a very precise definition in the legal system of

a country, can be considered vague because in different places it might be interpreted

in different ways. In China, for example, the concept of Adult could be defined as the

set of all persons of age 18 or older. In New Zealand however, this concept could be

defined as the set of all persons of age 20 or older.

The framework that I present in this dissertation could be used to detect this last

kind of misalignment between two ontologies and, if possible, to reduce it. This type

of alignment is called extension based [30] as the similarity between two classes will

be estimated by comparing the sets of the known entities that belong to them. For ex-

ample, we can define the concept of Adult as a vague concept dependent on the age of a

person. In Manchester syntax [14] this definition could look like this axiom template:

Adult = Person that hasAge only integer [≥ X]. An axiom template is an axiom with

zero or more occurrences of an adaptor. In this case, the symbol X identifies an adap-

tor. Each axiom template can be instantiated to a ground axiom by substituting each

adaptor with a value. For example, instantiating X to 24 would generate the following

axiom: Adult = Person that hasAge only integer [≥ 24]. Given a list of Chinese adults

and their age as a training set, the value X should be updated to the value of 18. If the

list of adults comes from New Zealand instead, X might get the value of 20.

2.5 Related work

In the literature it is possible to find a number of papers addressing the problem of

vagueness in ontologies. A survey of those approaches can be found in [22]. Those

approaches share the common objective of representing the uncertainty of vague con-

cepts inside an ontology considering vagueness as a static property of concepts. Fuzzy

Chapter 2. Background 10

logic and probabilistic techniques are some of the solutions proposed. The work I am

presenting here, instead, aims to address the problem of vagueness considering its im-

plications in Ontology Evolution and Ontology Alignment. The difference lies in the

fact that my framework is not concerned with representing vagueness inside an ontol-

ogy, but with considering it while evolving or aligning the ontology. As such, I focus

on the dynamic properties of vague concepts whose uncertainty is represented by their

capacity to change and to adapt in different contexts.

A related work is presented in [20]. This work proposes a tableaux algorithm

capable of identifying which sub-part of an axiom is responsible for an inconsistency

in ontologies using the ALC Description Logic. However this approach differs from

the one I am presenting here on several points. Firstly, it cannot deal with cardinality

restrictions and restrictions on the value of data properties. My approach, on the other

hand, is designed to work with them. Secondly, the approach proposed in [20] can only

identify parts of axioms that could be removed to restore consistency. The approach

that I am presenting here, instead, can suggests a rewriting of the axioms (without

removing any of their parts) that can be used to solve an inconsistency or that can be

used to update some of the axioms even when no inconsistency arises.

Another related work is described in [26] where a “continuous design-time match-

ing” approach is mentioned. In particular, this paper suggests its importance to deal

with ontology matching in P2P environments. However, this approach is dissimilar to

the one I am presenting because it is triggered only in the case of a failed interaction

and the alignment steps are focused only to solve the failed interaction.

Chapter 3

System architecture

3.1 The inputs taken by the system

The first input for this system is the main ontology we want to update or align. This

could be the ontology used by an agent that wants to align it to the other agent’s ontolo-

gies. Or it could be just the ontology among all those that are used by an application,

that needs to be updated. This ontology will be called original ontology to distinguish

it from the updated ontology which will be the output of the system. The updated on-

tology could differ from the original ontology only by having different values for the

adaptors. No axiom of the ontology will be removed and no one will be added.

The second and last input for this system is a set of axioms, here called training

axioms that will be used to update the original ontology. This set of axioms could

be the whole or part of another ontology that the original ontology wants to align to.

Or it could be just some semantic data used to validate the correctness of the original

ontology and, possibly, to update it. There is no restriction on the type or on the content

of the training axioms. However they need to be expressed in the same ontological

language as the original ontology (e.g. OWL), otherwise it would not be possible to

reason over them and over the original ontology at the same time (if this is the case,

they need to be translated).

The vague definitions contained in the original ontology will be modified if they

are found inconsistent with the individuals found in the training axioms. For example,

the original ontology might contain a vague definition that states that adults are only

persons over the age of 20. If in the training axioms it is asserted that an 18 years old

person is an adult, then the vague definition of adult contained in the original ontology

is found to be inconsistent and it could be modified.

11

Chapter 3. System architecture 12

Validate

Learn

Update

Feedback

Updates

Original
ontology
Original
ontology

Training
axioms

Training
axioms

Updated
ontology
Updated
ontology

Are the adaptors
right or wrong?
By how much?

How should
the adaptors
be updated?

When should
the updates
take place?

Figure 3.1: Schema of the system architecture

3.2 Overview of the system architecture

A schematic representation of the architecture of the system is illustrated in figure 3.1.

Given the original ontology and the training axioms as inputs, the system will output

an updated version of the ontology. The whole process of computing this output can be

divided into three main phases: the validation phase, the learning phase and the update

phase.

The first phase is the validation phase. The purpose of this part of the system is to

extract as much feedback as possible regarding the adaptors of the original ontology

by “validating” them against what is asserted in the training axioms. This part of the

system has the task of answering the following question:

• Is it possible to state that an adaptor X is incorrect? An adaptor X will be found

to be incorrect if, due to its value, one or more of the training axioms, if added to

the original ontology, would generate an inconsistency. If this is the case, which

is the minimal change in its value that, if adopted, would make X no longer

generate such inconsistency?

A more detailed description of this phase will follow in section 3.3.

The second phase is the learning phase. Given as input the feedback on the adaptors

produced in the validation phase, the aim of the learning phase is to determine how the

adaptors should be updated. This could be done in many different ways. For example

it is possible to keep some information from the previous iterations of the system (to

Chapter 3. System architecture 13

use it as a learning history) or to set the level of confidence in the current values of

the adaptors. While no learning strategy will perform optimally in all the possible

environments some learning strategies might be able to generalise well in different

situations. More details about this phase will follow in section 3.4.

The last phase is the update phase. This part of the system uses as input the set

of recommended updates to perform in the ontology computed in the previous phase.

The purpose of the update phase is to control when those updates will be concretely

applied to the original ontology, generating the updated ontology. For example it might

be desirable not to update the ontology too often, or to submit some of these updates

to a human expert. A more extensive description of this phase can be found in section

3.5.

3.3 The validation phase

3.3.1 Overview of the validation phase

This is the first phase of the system and the one that will process the “raw” data of the

training axioms producing a number of feedback objects. Those objects will contain a

compact representation of all the information that the next phase (the learning phase)

will need as input. Let us imagine that in the original ontology it is asserted that

adults are only persons over the age of X (in Manchester syntax this assertion could be

represented by the following axiom: Adult = Person that hasAge only integer [≥ X])

and that X currently holds the value of 18. Now imagine that the training axioms

consist of the following assertions:

1. Individual John is an Adult and he is 16 years old

2. Individual Jack is an Adult and he is 26 years old

Given this original ontology and these training axioms, the validation phase should

output the feedback shown in table 3.1. A more detailed description of how to compute

this output will follow in subsections 3.3.2 and 3.3.3.

3.3.2 Generating feedback for adaptors found to be incorrect

In the example previously defined in section 3.3.1, the first assertion of the training ax-

ioms (individual John is an Adult and he is 16 years old) will clash with the definition

Chapter 3. System architecture 14

Feedback 1 Feedback 2

Unique identifier adaptorX adaptorX

Was this adaptor correct? false true

Current value of this adaptor 18 18

Required value for this adaptor 16 26

Table 3.1: Examples of feedback for an adaptor X

of Adult (a Person of age 18 or older) in the original ontology generating an inconsis-

tency. In fact, John is a 16 year old Adult but the original ontology believes that Adults

should be at least 18 years old. Is it possible to solve this inconsistency changing the

adaptor X? It is easy to see that the answer is yes. In fact, if the value of X would have

been different (e.g. if X = 10) no inconsistency would have been generated. But 10 is

not the only value for X that would have solved the inconsistency. We can notice that

no inconsistency would arise for all the values of X inferior or equal to 16. However

we are only interested, among all the alternative values of X that would solve the in-

consistency, in the one that differs from the current value of X the least, in this case it

is 16. In fact there is no reason to change the value of X more than necessary, in order

to solve the inconsistency.

But how is it possible to automatically determine, among all the possible values of

X , the one that will solve the inconsistency while differing from the current value of X

the least? Fortunately, if this value exists, it is already contained in the training axioms

(or it is its first successor or predecessor, as it will be soon explained). For this reason it

is sufficient to consider only a small set of possible values. Given a set of inconsistent

axioms and an adaptor X , algorithm 3.1 shows how to extract this set of values.

Given the set of values V computed by algorithm 3.1 for a set of inconsistent ax-

ioms S and an adaptor X , if there is a value that, substituted to X , will solve the incon-

sistency for axioms S, then this value is included in V , or it is the first predecessor or

the first successor of a value in V . We could define the value b to be the first successor

of a value a if b > a and there is no other value c such that c > a and c < b. In the same

way we could define b to be the first predecessor of a value a if b < a and there is no

other value c such that c < a and c > b.

For each value v, it is necessary to consider also its first successor or its first pre-

decessor to deal both with strict and not strict inequalities. In fact, if an inconsistency

can be solved by making the following condition true: v ≥ X then X could take the

Chapter 3. System architecture 15

Algorithm 3.1 Algorithm to compute all the possible values to consider for an adaptor

X and a set of inconsistent axioms S

1 c o m p u t e A l t e r n a t i v e V a l u e s (i n c o n s i s t e n t _ a x i o m s , a d a p t o r)

2 v a l u e s = empty s e t

3 d a t a _ r e l a t i o n s = t h e s e t o f r e l a t i o n s i n i n c o n s i s t e n t _ a x i o m s

r e s t r i c t e d by t h e a d a p t o r on t h e v a l u e o f t h e i r t a r g e t

4 c a r d i n a l i t y _ r e l a t i o n s = t h e s e t o f r e l a t i o n s i n t h e

i n c o n s i s t e n t _ a x i o m s r e s t r i c t e d by t h e a d a p t o r i n t h e i r

c a r d i n a l i t y

5 a l l _ i n d i v i d u a l s = t h e s e t o f i n d i v i d u a l s i n i n c o n s i s t e n t _ a x i o m s

6 FOR EACH i n d i v i d u a l IN a l l _ i n d i v i d u a l s

7 FOR EACH r IN d a t a _ r e l a t i o n s

8 d a t a _ v a l u e s = s e t o f a l l t h e v a l u e s t h a t i n d i v i d u a l i s r e l a t e d

t o by r e l a t i o n r

9 v a l u e s ADD ALL d a t a _ v a l u e s

10 ENDFOR

11 FOR EACH r IN c a r d i n a l i t y _ r e l a t i o n s

12 c a r d i n a l i t y = number o f r e l a t i o n s r t h a t t h e i n d i v i d u a l has

13 IF c a r d i n a l i t y > 0

14 v a l u e s ADD c a r d i n a l i t y

15 ENDIF

16 ENDFOR

17 ENDFOR

18 RETURN v a l u e s

value of v. However, if the inequality is strict, the condition to make true would be:

v > X and giving to X the value of v would not make this condition true. In this last

case, we are interested in giving to X a value that is smaller than v but, at the same

time, it should be as close to v as possible. This value is the first predecessor of v. It

is necessary to consider the first successor for the same reason. For example,f X could

only take integer values, then the first successor of v is v+1 and the first predecessor

is v−1.

Let us consider again the original ontology described in section 3.3.1, containing a

definition of the concept of Adult (Adult = Person that hasAge only integer [≥ X]). If

we add the training axioms to the original ontology an inconsistency will arise. It will

be shown here an example of how to determine the value to substitute to the variable

X , such that it will solve the inconsistency generated from the training axioms while

differing from the current value of X the least (using algorithm 3.1).

Chapter 3. System architecture 16

First of all, it might be possible to find a subset of axioms that cause an inconsis-

tency. The Pellet reasoner [27], for example, offers such function to explain incon-

sistencies in OWL ontologies by extracting the subset of the axioms that is causing

the inconsistency. Instead of considering all the axioms of the original ontology plus

the training axioms, it can be desirable (but not necessary) to consider only the subset

of axioms that is generating an inconsistency. This subset, in fact, tends to be much

smaller than the original set of axioms and therefore reasoning over it can be done

more efficiently.

In the example previously proposed, it is possible to notice that the subset of axioms

S that generate the inconsistency has those members:

1. the vague definition of Adult (Adult = Person that hasAge only integer [≥ X])

with adaptor X = 18,

2. the assertion that John is an Adult (John instanceO f Adult),

3. the assertion that John is 16 years old (John hasAge 16)

As X is the only adaptor involved, we could try to run the algorithm 3.1 to determine

possible alternative values for the adaptor X . This algorithm will detect that hasAge is

the only relation restricted by the adaptor X , and thus it will look for instances, in the

inconsistent set of axioms S, that are described with such relation. In this case, John

is the only instance that is described by the relation hasAge, and it’s value, for such

relation, is 16. For this reason, the algorithm will return only the value 16. This means

that, if it is possible to solve the inconsistency in the set of axioms S changing the

value of the adaptor X , then the value to change X into either 16 or its first successor

or predecessor (if we assume that the age of a person must be an integer, then the first

successor would be 17 and the first predecessor would be 15).

At this point, we have only three values to consider in order to solve the inconsis-

tency: X = 15, X = 16, X = 17. We can now just substitute these values to X , starting

from the one closer to the current value (in this case 17 is the closest to the current

value 18) until we find one that solves the inconsistency or until we have tried all the

possibilities and failed. In this example, X = 16 will be the first substitution that solves

the inconsistency and at this point enough information has been extracted to produce

a feedback on the adaptor X . This feedback should state that the adaptor X , currently

holding the value of 18, was found to be wrong (as it generated an inconsistency)

and it can be corrected by changing its value to 16. This feedback is schematically

represented in table 3.1 under column “Feedback 1”.

Chapter 3. System architecture 17

3.3.3 Generating feedback from adaptors found to be correct

During the validation process, it is possible to modify adaptors even when no inconsis-

tencies arise. For example, we could state in the original ontology that adults are only

persons over the age of 5. Even if this definition is not causing inconsistencies, we can

still notice that all the adult individuals contained in the training axioms are, for exam-

ple, above 15 years old. In such case, there is the possibility to make the definition of

adult more restrictive and to increase the threshold that was found to be too loose.

This process starts in the validation phase by generating feedback about adaptors

that are found to be correct. This information is then passed to the learning phase, that

could decide to modify an adaptor even if it is not causing inconsistencies. But how is

it possible to state that an adaptor X is correct? Two possible definitions will here be

proposed.

• DEFINITION 1. An adaptor X currently holding the value c will be found to be

correct if it is not generating an inconsistency, and if it exists a value v, with

v 6= c such that changing the value of X to v would generate an inconsistency. If

this is the case, which is the maximal change in the value of X that would still

maintain the correctness of X?

• DEFINITION 2. An adaptor X will be found to be correct if, thanks to its value, it

is possible to entail another axiom Y and Y can also be entailed by other axioms

which are not dependent on adaptors. If this is the case, which is the maximal

change in the value of X that would still maintain the entailment of Y by the

axioms dependent on the adaptor X?

Generating feedback from adaptors that are correct is a computationally expensive

process. In section 5.3.3 a possible implementation of this process will be discussed.

This implementation will make use of DEFINITION 2 because under this definition it

is possible to restrict the subset of axioms to consider to only those that contribute to

the entailment of Y . Being able to reduce the subset of axioms to work with is an

important factor to improve the efficiency of the system.

Chapter 3. System architecture 18

3.4 The learning phase

3.4.1 Overview of the learning phase

The learning phase is responsible for computing the updates that the original ontology

should adopt, given the feedback objects extracted from the validation of the training

axioms. It is here called “learning” phase because the feedback objects can be seen

as training data and the aim of this phase as to learn the “optimal” value to give to

the adaptors, given this training data. However, what counts as “optimal” depends

on the preferences of who is using this system. In an Ontology Alignment setting,

for example, the updates should try to generate an updated ontology which is more

likely (compared to the original ontology) to interact with the ontology defined by the

training axioms without generating inconsistencies. In an Ontology Change setting,

instead, the training axioms could be used just to update the values of the adaptors of

the original ontology. In this case, resolving the inconsistencies between the original

ontology and the training axioms might not be a priority.

The whole system (and therefore also the learning phase) will execute every time a

set of training axioms is used to update the original ontology. In fact, multiple sets of

training axioms could be used to train the original ontology over time. Each iteration

of the learning phase should not be seen as a learning step that adjusts the value of

the adaptors getting them closer to an hypothetical “optimal” value. Each iteration of

the learning phase should compute the exact value that is believed to be the “optimal”

value that each adaptor should adopt, possibly analytically. This guarantees that the

updated ontology will always contain values for the adaptors that are optimal. At least

optimal to the best of its experience based on the previous sets of training axioms

examined. For this reason, an ontology can be correctly updated using just one set of

training axioms.

The feedback generated in the validation phase should provide the necessary evi-

dence to justify a change in the adaptors. The following section describes a possible

way to use this evidence to compute by how much an adaptor should be updated.

3.4.2 Learning by considering the evidence that supports a change

A possible learning strategy is to adjust the value of an adaptor according to the evi-

dence that is found that suggests its change. If an adaptor was found to be wrong, then

it reasonable to assume that there is evidence to support its change. More specifically,

Chapter 3. System architecture 19

given feedback about an adaptor X , currently holding the value c, that was found to be

wrong as it generated an inconsistency solvable by changing its value to v, then there

is evidence to support the change of the value of X by an amount equal to v− c.

But if an adaptor is found to behave correctly, is there evidence to suggest its

change? This depends on how we want to update the adaptors. If our main goal is

to prevent inconsistencies, then it is reasonable to claim that an adaptor that behaves

correctly does not need any change. If this is the case, then there is also no need, dur-

ing the validation phase, to compute any feedback about adaptors that are found to be

correct (as it would not be used in the learning phase).

However, we might be interested in adjusting an adaptor even when it appears to

behave correctly. Let us consider again the example about the original ontology con-

taining a vague definition of what an Adult is (as described in section 3.3.1). Assume

that the training axioms will consist only of a list of individuals, optionally labeled as

Adults, along with their age. We can observe that, if an Adult is found to be younger

than expected, this would generate an inconsistency (and eventually an evidence sug-

gesting to reduce the threshold between adults and not adults). However, no evidence

might be generated to suggest an increase in the threshold. In fact, if a person is as-

serted to be old enough to be considered an Adult, no inconsistency will be generated

by this fact. As a result, the adaptor that defines the threshold used to tell if a person

is an Adult or not could only decrease. This will create a problem as the concept of

Adult will risk, over time, to become too “loose” (meaning that the concept will have

more members than it should have), without having the possibility of becoming more

restrictive. In this situation, it could be desirable to change the value of an adaptor even

when it is found to be correct, as a way to make a vague definition of a concept more

restrictive, when it is found to be too loose.

This is also due to the fact that the reasoning process considered so far worked

under the Open World Assumption. Under the Closed World Assumption, instead,

more inconsistencies could be generated by the training axioms and, consequently,

more feedback could be generated about adaptors found to be incorrect. For a more

detailed discussion about the implications of the Open and Closed World Assumptions

see section 4.1.

But what change should be computed when an adaptor is found to behave cor-

rectly? Given a feedback about an adaptor X , currently holding the value c, that was

found to be correct up to the value of v, then there is evidence to support the change of

the value of X by an amount equal to v− c. In fact, we might want to make the value

Chapter 3. System architecture 20

of X the most restrictive as possible, while maintaining its correctness.

After those considerations it can be seen that each feedback object generated in

the validation phase can provide evidence supporting a change of an adaptor. But

what happens when there are two different pieces of evidence supporting two different

changes for the same adaptor? The learning phase should only output up to one update

for each adaptor. When different pieces of evidence support a change for the same

adaptor than it is necessary to compute an average over them. Suppose that, for the

same adaptor X , there are n pieces of evidence supporting changes [v1,v2, ...,vn]. The

unique update u could then be the mean v̄ of those pieces of evidence: v̄ = 1
n (∑

n
i=1 vi).

For example, given three feedback objects about an adaptor X , two of them might

provide evidence to increase the value of X by 4, and the third one provides evidence

to reduce it by 2. Summing the evidence and dividing it by the number of feedback

considered, the update computed would be ((+4)+(+4)+(−2))/3=+2. This means

that, after considering those three feedback objects, the adaptor X should be increased

by 2.

For practical purposes, however, it could be desirable to compute the update in

a more sophisticated way. For example, we could give different weights to different

types of evidence by introducing a weight function w(v) = [0,1]. In fact an evidence

generated from an inconsistency (encoded by a feedback object about an adaptor found

to be incorrect) could be considered more important than evidence generated from a

consistency (encoded by a feedback object about an adaptor found to be correct).

Moreover, if the information contained in the training axioms is subject to noise, it

could be desirable to reduce the importance of the pieces of evidence that are found to

be far from the mean v̄. This would reduce the risk that some erroneous information

would influence too much the final result. For example, given the following pieces

of evidence: [+6,+9,+2,+4,+5,−984751], the piece of evidence −984751 could be

reduced in importance as most likely generated by noise. It is possible, for this purpose,

to use a sigmoid function (s : Reals 7→ [0,1]) to reduce exponentially the importance

of a piece of evidence v the further it is from the mean v̄ (reduction factor computed

by: s(|v− v̄|)). Pieces of evidence very distant from the mean should be scaled by a

factor close to 0 (s(∞) = 0) while if they are close to the mean they should be scaled

by a factor close to 1 (s(0) = 1). This sigmoid function could be automatically scaled

by an amount proportional to the standard deviation s =
√

∑
n
i=1(vi−v̄)2

n−1 . Including these

Chapter 3. System architecture 21

additional considerations, the update u can be computed in the following way:

u =
1
n

(
n

∑
i=1

vi w(v)s(|v− v̄|)

)

3.5 The update phase

This last phase is responsible for producing the updated ontology applying the set of

updates computed in the previous phase to the original ontology. Each update will

suggest by how much to modify an adaptor. When the updates take place, the original

ontology will be searched for all the occurrences of an adaptor and each of them will

be updated.

But when to perform those updates? This depends on the preferences of the user

of this system. It could be desirable to update the ontology very quickly, every time an

update is produced. Or it could be preferable to perform the updates only at specific

times, or only after a human expert approved the updates. The updated ontology could

then substitute the original ontology or it could become a new version of the original

ontology which will be kept as a previous version.

This phase is also responsible for making sure that the updated ontology remains

consistent. A possible way to ensure this is to apply only one update at a time discard-

ing the updates that generate inconsistencies.

Chapter 4

Considerations about the framework

4.1 Open and Closed World Assumptions

4.1.1 Difference between Open and Closed World Assumption

The interpretation of an ontology could be different under different assumptions. For

example, two different automatic reasoners might infer different facts from the same

ontology, if they make different assumptions about it. Two of those assumptions are

the Closed World Assumption (CWA) and the Open World Assumption (OWA) [8].

The OWA is based on the principle that the ontology has only a partial knowledge

of its domain of interest. More specifically, given an ontology O and its closure under

inference O′ (O′ containing every assertion that can be inferred from O), if the O′ does

not contain a fact X or its negation ¬X , then this fact X is considered to be unknown.

The OWA is desirable not to have to explicitly represent everything that is true or false

and to leave ontology potentially open to extension (the addition of new information).

The CWA, on the contrary, is based on the assumption that the ontology has a

complete knowledge of its domain of interest and that everything that is true must be

entailed by what is asserted in the ontology. This implies that, given O′ as the closure

under inference of an ontology O, if O′ does not contain a fact X , then this fact is

considered to be false in O. The CWA could be preferred when it is important to

constrain the information contained in the ontology without assuming that it could be

extended by additional information.

The work I am presenting in this dissertation follows the OWA. The reason is be-

cause OWL ontologies are designed to be deployed in an open environment, such as

the Semantic Web, and therefore they are commonly interpreted using the OWA. Pellet

22

Chapter 4. Considerations about the framework 23

[27] and HermiT [25] are two OWL reasoners that use the OWA and that do not cur-

rently support reasoning under CWA. In fact it was not possible to find any reasoner

supporting CWA for OWL ontologies.

4.1.2 Consequences of OWA for cardinality restrictions

Ontological instances can be connected to other instances or to literals (data types) by

relations. Cardinality restrictions can be used to restrict the maximum or minimum

number of such relations that the instances of a class should have. When an adaptor

X is used to restrict a cardinality, it might not generate an inconsistency even if it

is incorrect. Without generating an inconsistency, it will be hard to detect that X is

incorrect, and how to change it.

For example, imagine that all the instances of the vague class PopularPerson

should have more than X friends, therefore having more than X relations of type

hasFriend. If an instance I of PopularPerson is found to have less than X friends,

no inconsistency is generated because, under the OWA, the constraint of having more

than X friends is still satisfiable. In fact, in this setting it is not possible to state that

I has less than X friends (thus violating the constraint) because under the OWA, it is

possible that other hasFriend relations for instance I exist, even though they are not

explicitly asserted in the ontology. If we want to reason excluding (or ignoring) the

possibility that additional relations (not asserted in the ontology) exist, then we might

be interested in using the CWA. This could be the case, for example, if we have ac-

cess to a comprehensive list of persons and their friendship relations, and we are not

interested relations not asserted there.

If CWA reasoning is desired, but a suitable reasoner is not found, the axioms of

the ontology could be changed to simulate CWA reasoning. A possibility is to assert

the cardinalities of the relationships restricted by adaptors as data types, and therefore

treated as fixed values (excluding the possibility that more of such relationships ex-

ist). For example, the vague concept PopularPerson = Person that hasFriend min X

(restricted in the cardinality or relationship hasFriend) could be expressed as:

PopularPerson = Person that numberO f Friends some integer [≥ X]

In this last case, X no longer restricts a cardinality, it now restricts the target value of

the (functional) data property numberO f Friends. However, in order to perform this

conversion, an automatic system should be used to convert the cardinalities found in

an ontology into data properties. If the reasoner used can deal with data properties

Chapter 4. Considerations about the framework 24

restrictions more efficiently than with cardinality restrictions, this conversion could

also be used to improve the performances of the reasoning process.

4.2 Interconnected vague concepts

An ontological concept can be defined as vague, not only if it interpretation is depen-

dent on an adaptor, but also if it is defined by another concept which is vague. In fact a

vague concept C might not contain any adaptors in its definition but, if it is defined by

some vague concepts, its meaning will still be (indirectly) dependent on some adaptors.

More specifically, the adaptors that influence the meaning of a concept C are:

1. the adaptors used in the definition of C

2. for every vague concept C′ used to define C, the adaptors that influence the mean-

ing of C′

After this consideration, it is possible to provide an alternative definition of a vague

concept: a concept can be called vague if there is at least one adaptor that influence its

meaning.

An implication of this fact is that whenever a concept C is found to be responsible

for an inconsistency, all the adaptors that influence its meaning could be modified in

order to solve the inconsistency.

For example, let’s imagine a class A defined by some adaptors. In order to adjust

those adaptors, the ontology containing this class is validated against a set of training

axioms. Let’s assume that some individuals in the training axioms are classified as

members of class A but no individual in the training axioms is classified as a non-

member of class A. This is a realistic assumption because ontologies usually state when

individuals are members of a class but they rarely state explicitly when an individual is

not a member. This would imply that all the examples provided in the training axioms

will be members of class A but no individual will be classified as a non-member of

class A. Without negative examples (instances that do not belong to a concept) it

becomes more difficult for the adaptors to define a precise threshold between what

counts and what does not count as a member of a class. However, if class A is used to

define another concept B then it is possible to infer non-members of class A from the

members of class B.

For example, according to ontology O a city could be defined as Suitable to open

an automotive business if there are less than X BigCompetitor in the same city. A

Chapter 4. Considerations about the framework 25

BigCompetitor could be defined as a business that sells more than Y cars every year.

Now imagine to receive the information, from a trustworthy source (e.g. an expert in

the field), that city C is Suitable for opening the business. However an inconsistency

arise because, according to ontology O, city C is not found to be Suitable as there are

more than X BigCompetitor in that city. If X and Y are adaptors, then there are two

ways to solve this inconsistency:

1. the maximal number of acceptable BigCompetitor in the same city (X) should

should increase

2. some of the businesses that were considered BigCompetitor should no longer be

considered as such (increasing Y)

The second way of solving this inconsistency will generate negative examples for the

class BigCompetitor. In fact, the adaptor Y should be modified in such way to exclude

some of the instances that were previously classified as BigCompetitor from this class.

As a result, the assertion that an instance is a member of a class might imply the non-

membership of other instances in other classes. This is important in order to extract

information about both members and outliers of a class.

This example also shows that inconsistencies could be solved in more than one

way, when more than one adaptor is involved. If multiple values for an adaptor X are

found to solve the inconsistency, only the one that is closer to the current value of X

should be considered (as discussed in section 3.3.2). However if multiple adaptors are

involved in an inconsistency (as in the example previously described), a feedback can

be generated for each of those adaptors that, if modified, would solve the inconsistency.

4.3 Single modification of adaptors

How many adaptors should be changed in order to solve an inconsistency? Without

prior assumptions, an inconsistency dependent on n adaptors might require the concur-

rent modification of all of them, in order to be solved. The possible combinations of

changes in the adaptors that should be tried before solving an inconsistency (or before

having examined all the possibilities) grow exponentially as the value n grows. In such

a situation, using a large number of adaptors in an ontology might not be possible in

practice.

In a minimal set of inconsistent axioms, however, if the inconsistency can be

solved, it can be solved by modifying just a single adaptor. A set of inconsistent

Chapter 4. Considerations about the framework 26

axioms can be called minimal if no strict subset of it is inconsistent. Algorithms to

identify such minimal sets exists, such as the ones proposed in [18].

Each adaptor restricts a relation of the ontology. Whenever this restriction is vi-

olated, an inconsistency can be generated. If the minimal set of inconsistent axioms

is computed for this inconsistency, it will include only the axiom whose restriction is

violated, and a minimal set of of axioms that can prove the violation.

Let’s imagine a minimal set of inconsistent axioms S whose inconsistency is gen-

erated by the violation of relation r restricted by adaptor a. Since this set is minimal,

there is no other relation r′ violated by any other adaptor. In fact, if this happened

to be the case, the violation of r′ could constitute a set of inconsistent axioms by it-

self (meaning that S was not minimal). Since constraints are expressed as inequalities

(x < a, x > a, x ≤ a, x ≥ a) there must exist a value for a that can solve the violation

of the constraint.

Chapter 5

Implementation

5.1 The ontology used in the simulation

The simulation is designed to use OWL 2 ontologies serialised in RDF/XML. However

OWL ontologies do not support the notion of vagueness and additional information

has to be added to the ontology in order to represent adaptors. In order to preserve the

functionalities of the OWL ontology used, any additional information required by this

system to work can be encoded as axiom annotations, or as attributes in the RDF/XML

serialization of the ontology. For this reason this information will be transparent to

any reasoner and it will not change the official semantic interpretation of the ontology.

This implies that any OWL ontology could be annotated with some adaptors without

affecting its normal use.

The annotations that are required by the system to work properly are the following:

• each axiom which contains one or more adaptor should be labeled with an unique

identifier

• each adaptor should be identifiable with an unique identifier.

The identifier of an adaptor X should be an attribute of every XML element of the RD-

F/XML serialization of the vague ontology that directly contains a value that we want

to bind to X . When X is updated, then all the values that are bind to X will change ac-

cordingly. For example, the ontology described in section 3.3.1 contained a definition

of the concept of Adult defined as a person of age 18 or older. This definition can be en-

coded by the class equivalence axiom: Adult =Person that hasAge only integer [≥ 18].

This definition, however, does not specify that 18 has to be considered as an adaptor.

27

Chapter 5. Implementation 28

+feedAxioms(Set OWLAxiom)

+notifyOntologyChange(OWLOntology)

<<Interface>>

VoController

VoControllerImpl

+feedAxioms(Set OWLAxiom) : List Set AdaptorFeedback

+notifyOntologyChange(OWLOntology)

<<Interface>>

VoValidator

VoValidatorImpl

+feedFeedback(List Set AdaptorFeedback) : Set AdaptorUpdate

<<Interface>>

VoLearner

VoLearnerImpl

+feedUpdates(List AdaptorUpdate)

+feedUpdatesAndForceUpdate(List AdaptorUpdate) : List AdaptorUpdate

+forceUpdate() : List AdaptorUpdate

+getRejectedUpdates() : List AdaptorUpdate

<<Interface>>

VoUpdater

VoUpdaterImpl

+getAdaptorID() : String

+getCurrentValue() : String

+getRequiredValue() : String

+wasCorrect() : boolean

<<Interface>>

AdaptorFeedback

+getAdaptorID() : String

+getUpdate() : String

<<Interface>>

AdaptorUpdate

AdaptorFeedbackImpl

AdaptorUpdateImpl

1

1

1

Figure 5.1: UML class diagram of the main classes of the java program

To do so, we have to annotate the value 18, inside the XML/RDF serialization of this

axiom, with the identifier of X as an attribute.

In the simulation implemented adaptors can only be numerical values. As such, we

can distinguish two different usages for an adaptor X :

1. it can be used to determine the cardinality restriction for object or data properties

(e.g. PopularPerson = Person that hasFriend min X Person)

2. it can be used to restrict the data range of numerical data properties (e.g. TallPer-

son = Person that hasHeight some double [>= X])

5.2 Overview of the program used

The program to run the simulation was implemented using the Java 1.6 programming

language. The UML class diagram in figure 5.1 shows the main interfaces used in

the program, along with their implementing classes and the main operations that they

support. Each of the three main phase of the system (as described in section 3.2)

is implemented by the functionalities of the three main classes of the system. More

precisely:

• The validation phase is implemented by a VoValidator object

Chapter 5. Implementation 29

• The learning phase is implemented by a VoLearner object

• The update phase is implemented by a VoUpdater object

The VoController object have the task to coordinate the entire flow of the system. More

specifically, it deals automatically with the routine of passing the inputs of each of the

three main phases to the following one. Each VoController is meant to operate on a

single original ontology. An iteration of the validation, learning and update phases is

triggered every time a set of training axioms is given to it as an input. The VoController

will also automatically update its internal fields (including the VoValidator, VoLearner

and VoUpdater objects) every time the original ontology is changed into an updated

ontology. After each iteration of the system, the updated ontology computed can be-

come the new original ontology, ready to be updated again by another iteration of the

system.

To work with the OWL 2 ontologies, I used the OWL API [13], version 3.2.3.

Adaptors are identified and modified accessing the XML/RDF serialization of the on-

tology. To manipulate XML data I used the JDOM api [15], version 1.1.1.

5.2.1 The data types used: AdaptorFeedback and AdaptorUpdate

Two different objects are used as data types by the system. The first one is the Adap-

torFeedback object and it represents a single feedback given to an adaptor. As such, it

is used as the output of the validation phase and as the input of the learning phase. Its

internal fields should include at least the following:

• ID: the identifier of the adaptor to which this feedback refers to

• currentValue: the value that the adaptor was holding during the validation time

• wasCorrect: a boolean that is set to false if the value CurrentValue was causing

an inconsistency, true otherwise

• requiredValue: if wasCorrect is false, requiredValue is the closest value to

currentValue that is found to be correct. If wasCorrect is true, requiredValue is

the most distant value from currentValue that was found to be correct.

The second object used by the system is the AdaptorUpdate object and it represents a

suggested update for a single adaptor. It is used as the output of the learning phase and

as the input of the update phase. Its internal fields should include at least the following:

Chapter 5. Implementation 30

• ID: the identifier of the adaptor to which this update refers to

• update: the change that is suggested to be performed on the adaptor. It is rep-

resented as a relative increase or decrease in the value of the adaptor (e.g. +3 or

-10)

For simplicity, the simulation I implemented is only dealing with integers values for

adaptors. In theory, however, any comparable data type (a data type that supports the

“<”, “=” and “>” operators) could be used by this system (for example dates). For

this reason, in order to generalise to different data types, the values of the adaptors

(currentValue, requiredValue and update) are encoded as strings objects. The identi-

fier ID is also encoded as a string object.

5.3 The implementation of a VoValidator object

5.3.1 The main functionality: computing the feedback

In the simulation, the interface VoValidator was implemented by the concrete class

VoValidatorImpl. This class is initialized with the original ontology that needs to be

validated. Given a set of training axioms, the main functionality that this class provides

is to compute a list of sets of parameter feedback. Each of these sets should normally

contain just one feedback object. In fact it is reasonable to assume that only one adap-

tor should be modified in order to solve an inconsistency, as discussed in section 4.3.

However this set might contain multiple feedback objects about different adaptors if

only the concurrent modification of all of them could solve the inconsistency. Ex-

tracting feedback about adaptors that are found to be correct is optional, as in some

circumstances it might not be necessary. It is necessary to specify this option while

instantiating a VoValidatorImpl object.

Computing this feedback can be done by algorithm 5.1 (this algorithm makes use

of algorithms 5.2 and B.1). First of all, the training axioms are added to the origi-

nal ontology generating a combined ontology. If the combined ontology is found to

be inconsistent, the explanations about this inconsistency are generated (in algorithm

5.1, this function is called computeExplanations()). The Pellet reasoner provides a

functionality to compute the explanations for an inconsistent ontology. Each explana-

tion is a minimal set of axioms that generate an inconsistency (the adjective minimal

indicates that no strict subset of these axioms can generate an inconsistency). If an in-

Chapter 5. Implementation 31

Algorithm 5.1 Algorithm to compute feedback from the training axioms

1 feedAxioms (t r a i n i n g _ a x i o m s)

2 f e e d b a c k = empty l i s t

3 combined_on to logy = o r i g i n a l _ o n t o l o g y + t r a i n i n g _ a x i o m s

4 IF combined_on to logy i s i n c o n s i s t e n t

5 e x p l a n a t i o n s = c o m p u t e E x p l a n a t i o n s (combined_on to logy)

6 FOR EACH i n c o n s i s t e n t _ a x i o m s IN e x p l a n a t i o n s

7 f e e d b a c k ADD computeFeedback (i n c o n s i s t e n t _ a x i o m s)

8 ENDFOR

9 ENDIF

10 IF c o m p u t e _ f e e d b a c k _ f r o m _ c o n s i s t e n c y

11 IF combined_on to logy i s i n c o n s i s t e n t

12 r e m o v e I n c o n s i s t e n t A x i o m s (combined_on to logy)

13 f e e d b a c k ADD computeFeedbackFromCons i s t ency (

combined_on to logy)

14 ENDIF

15 RETURN f e e d b a c k

consistency has different causes, the explanation will contain multiple sets of axioms

(each set representing an explanation). Each of those inconsistent sets of axioms are

then analysed to extract feedback from them (in algorithm 5.1, this function is called

computeFeedback()). A more detailed definition of this function will be discussed in

section 5.3.2.

After computing the feedback generated from inconsistencies, the validation phase

could be finished and the resulting feedback can be returned. However, if this feature

is enabled, there is the possibility to compute feedback about adaptors that were found

to be correct. This function will be discussed in section 5.3.3 (in algorithm 5.1, this

function is called computeFeedbackFromConsistency()). However it is only possible

to extract feedback about adaptors that are found to be correct on a consistent ontology.

For this reason, if the combined ontology is found to be inconsistent, it should be re-

paired (the inconsistencies should be removed). A simple way to repair an ontology (in

algorithm 5.1, this function is called removeInconsistentAxioms()) is to progressively

remove from the ontology the axioms that are causing an inconsistency until no more

inconsistency is found. This solution can work well in practice, but it does not guaran-

tee an optimal repair of the ontology. Ideally the set of axioms removed should be the

Chapter 5. Implementation 32

minimal set of axioms that, if removed, would restore the consistency of the ontology.

However approaches that can guarantee this property (such as the algorithm proposed

in [11] to find a “maximal consistent subontology”) have an increased computational

complexity.

5.3.2 Computing feedback from a set of inconsistent axioms

Once a subset of axioms S that generate an inconsistency is identified, it is possible to

determine if the inconsistency can be solved modifying some adaptor. This process is

described in algorithm 5.2. First of all, the algorithm determines the set of adaptors

contained in S. If there is none of such adaptors, the algorithm terminates returning an

empty set. In fact, only adaptors can be modified by this system in order to solve an

inconsistency.

Algorithm 5.2 Algorithm to compute feedback from a set of inconsistent axioms

1 computeFeedback (i n c o n s i s t e n t _ a x i o m s)

2 f e e d b a c k = empty s e t

3 a d a p t o r _ s e t = s e t o f a d a p t o r s i n i n c o n s i s t e n t _ a x i o m s

4 FOR EACH a d a p t o r IN a d a p t o r _ s e t

5 a l t e r n a t i v e s = empty s e t

6 r e l a t i o n s _ r e s t r i c t e d = s e t o f r e l a t i o n s r e s t r i c t e d by

a d a p t o r

7 FOR EACH r e l a t i o n IN r e l a t i o n s _ r e s t r i c t e d

8 a l t e r n a t i v e s ADD v a l u e s found as t a r g e t s o f t h e r e l a t i o n

i n i n c o n s i s t e n t _ a x i o m s

9 ENDFOR

10 FOR EACH v a l u e IN a l t e r n a t i v e

11 s u b s t i t u t e (a d a p t o r , va lue , i n c o n s i s t e n t _ a x i o m s)

12 IF s u b s t i t u t i o n s o l v e s t h e i n c o n s i s t e n c y

13 f e e d b a c k ADD f e e d b a c k a b o u t t h i s s u b s t i t u t i o n

14 ENDIF

15 ENDFOR

16 removeDominatedFeedback (f e e d b a c k)

17 ENDFOR

18 RETURN f e e d b a c k

After identifying the set of the adaptors involved, it is necessary to determine the

Chapter 5. Implementation 33

possible alternative values for the adaptors. This set of alternative values is dependent

on what types of relations is the adaptor restricting. Only values associated with those

relations will be considered as alternatives. For example, if adaptor X is restricting the

relation hasAge, and among the axioms S it is asserted that an individual hasAge 17,

then 17 is a possible alternative value for X . In this example, if X is not restricting

any other relation, than no other value associated with other relations is considered

(e.g. if for some instance the relation distanceMeasure 8 is asserted in S, 8 will not be

considered as a possible alternative value for X).

If, instead, an adaptor X is restricting a cardinality of a relation r, then the possible

alternative values are computed by calculating the cardinality that instances in S have

for relation r. For example, if X restricts the cardinality of the relationship parentO f ,

and an instance in S is asserted to have 3 of such relations, then 3 would be a possible

alternative value for X .

When the set of the alternative values for an adaptor is computed, it is possible to try

those substitutions (in algorithm 5.2 this function is called substitute()). As discussed

in section 3.3.2, also the immediate successor and the immediate predecessor of those

values might have to be considered. After substituting a new value for an adaptor it

is possible to test if this change did solve the inconsistency. If this is the case a new

feedback object can be added to the list of the feedback objects to return.

The set of feedback object calculated should not have more than one feedback for

each adaptor. If multiple feedback objects are found to refer to the same adaptor, only

the one that dominates the other feedback objects will be returned. A feedback object

F1 dominates another feedback object F2 if both refer to same adaptor X , and if F1

states that the inconsistency in S can be solved modifying X by an amount d1, smaller

than the amount d2 that F2 is suggesting. For example imagine that X currently holds

the value of 20, that F1 states that the inconsistency can be solved changing X to

22, and that F2 states that the inconsistency can be solved changing X to 30. In this

case, F2 should be discarded as we are interested in solving the inconsistency with the

smallest modification of the adaptors as possible.

5.3.3 Computing feedback from a set of consistent axioms

In a set of consistent axioms, no feedback can be generated about incorrect adaptors.

However it might be possible to generate feedback about correct adaptors. The defini-

tion of a correct adaptor that will here be used is the second definition (DEFINITION

Chapter 5. Implementation 34

2) provided is section 3.3.3. This definition states that an adaptor X can be defined

correct if, thanks to its value, it is possible to entail a fact y which is certain. A fact y is

said to be certain if it is entailed in an ontology without considering the vague axioms.

This means that y would be considered true in the ontology for every possible values

of the adaptors.

The algorithms B.1 and B.2 in appendix B can be used to extract feedback from

a consistent ontology. The basic principle behind these algorithms is to identify a set

of facts Y that are certain in the ontology. Each fact y ∈ Y , being a certain fact, is

entailed by some axioms of the ontology that are not vague. These axioms can be

temporary removed to make y no longer certain in the ontology. At these point, if y is

still entailed by the ontology, it must be entailed by some vague axioms S. The adaptors

that influence the meaning of the vague axioms S can then be changed using alternative

values. If one of those adaptors X , once changed, makes the fact y no longer entailed,

then it is known that X was responsible for the correct entailment of the certain fact y.

At this point there is enough information to create a feedback object about adaptor X .

5.4 The implementation of a VoLearner object

The VoLearnerImpl class is a concrete implementation of the VoLearner interface, re-

sponsible for providing the functionalities required in the learning phase. The VoLearner

main functionality is to compute a set of AdaptorUpdate objects given a list of Adap-

torFeedback objects. The values to update an adaptor with are computed analytically,

using the general principles described in section 3.4.2. Each AdaptorFeedback object

suggests a change in the value of an adaptor. The update computed will be an average

over those changes.

To reduce the risk of computing a wrong update due to noise in the data, changes

that are found to be far from the mean will be reduced in importance while computing

the average. The standard deviation of those changes will determine how far a change

should be from the mean to be significantly reduced in importance. Given x as the

distance from the mean and s as the standard deviation of the changes, the reduction is

computed by a generalised logistic function in the following form:

l(x) =
100(

1+(s/q)e−b(x−2s)
)q/s

This logistic function is dependent on parameters q and b by default initialised with

values 50 and 0.1 (as those values were found to generalise well between the different

Chapter 5. Implementation 35

use cases tested). They can be modified if a different value is preferred. This logistic

function will output the loss of importance (as a double precision percentage) of a

change that has x as the distance from the mean (if l(x) = 0 the change will be entirely

considered and if l(x) = 100 the change will not be considered).

The VoLearnerImpl class also allows to store information about the previous learn-

ing iterations, to use it as an additional information while computing the updates. If a

memory of size n is permitted, the previous n changes that were examined are stored

and they will be considered while computing the updates. A value of n greater than 0

will result in more confidence about the current value of the adaptors and their change

will be less flexible. This can be desirable if the training axioms come from an unreli-

able source or if they are subject to noise.

5.5 The implementation of a VoUpdater object

The interface VoUpdater defines the tasks required by the final phase of the system: the

update phase. The class used in the simulation for this purpose is the VoUpdaterImpl

class. It’s main functionalities are two. The first one is to store the updates computed

by the previous part of the system, the learning phase, until they are concretely applied

to the original ontology (how to decide when to concretely apply them is discussed

in section 3.5). The second functionality is to perform the updates on the original

ontology generating the updated ontology.

Until the updates are applied to the ontology, it is necessary to store them. It is

possible to store all the updates generated from the past iterations of the system, but

this is probably not desirable. Imagine that the value of an adaptor X is 10, but the

correct value for it is 15. In a first iteration, the update computed for the adaptor X

could then be +5. In a second iteration, the correct value for X is 16 and this time

the update computed might be +6. In this situation, it is not desirable to apply both

updates, as the resulting value for X = 10+ 5+ 6 = 21 is not the correct one. For

this reason, one of those updates should be discarded. In general, only the most recent

update among all those that refer to the same adaptor should be kept (in this case +6).

Even though this should be the standard approach, it is possible to disable this option

to keep all the updates without discarding any. This can be preferred if, for example,

a human expert wants to examine all the different updates computed to for the same

adaptor.

The concrete update of the original ontology into the updated ontology can be

Chapter 5. Implementation 36

triggered by calling the f orceU pdate() method on a VoUpdater object. This update

can happen as soon as the updates are received as inputs, if this is desired. Whenever

this process of update starts, the required updates are applied one at a time. Each

update will modify the value of an adaptor in the original ontology. If this modification

maintains the consistency of the ontology, then the next update is considered, until

there are no more updates to apply. If an update instead generates an inconsistency, it

is discarded and the next one is considered.

It is necessary to check the consistency of the ontology after updating one or more

adaptors. In fact it is not possible to know if the effect of an update (or the combined

effects of multiple updates) will generate an inconsistency. The updates that generate

an inconsistency, and that for this reason are discarded, will be kept in case the in-

formation they contain could be used in some other way. For example they could be

considered again the next time an update is performed on the ontology.

If estimating the consistency of an ontology is an expensive process, and the risk for

the updates to generate inconsistencies is low, another approach could be to compute

all the updates at once. In this last case, the consistency of the ontology can be checked

only once, after all the updates are applied. If the ontology is found to be inconsistent,

however, all the updates might be discarded.

Chapter 6

Evaluation

6.1 Evaluation with artificial data

6.1.1 An ontology about persons and their ages

The first evaluation of the system uses an ontology describing persons and simple rela-

tions between them. The most important definitions in this ontology are the following:

• Person: a general class representing a human being

• Minor = Person and (hasAge only integer [< a1]): a class representing a young

person (defined as a person under the age of a1)

• Adult = Person and (hasAge only integer [≥ a1]): a class representing an adult

(defined as a person of age a1 or older)

• BusyParent = Person and (parentO f min a2 Minor): a class representing the

vague concept of a busy parent (defined as a person with at least a2 young chil-

dren)

• RelaxedParent = Person and (parentO f some Person) and not BusyParent: a

class representing the vague concept of a relaxed parent (defined as a parent that

is not busy)

• hasAge: a functional data property with domain Person and range integer values

• parentO f : an object relation between two Person: a parent and a child

37

Chapter 6. Evaluation 38

Values of a1 over multiple iterations

a1 Correct value

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

of iterations

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

v
a
lu
e
 o
f
a
1

Figure 6.1: Plot of the values of adaptor a1 across 40 iterations of the system (no noise).

The red squares indicate the value computed by the system, the blue circles indicate

the correct value for that iteration.

The training axioms are produced automatically generating instances of the above

mentioned classes, and the relations between them. Since the data is produced au-

tomatically, it is possible to know the exact value that the adaptors should have, as it is

the value used while producing the data. For example, data can be produced generating

n persons and their age (in the simulation the age is an integer between 0 and 80) and

then each of those persons is labeled as an Adult if his/her age is greater or equal than

a1, and it is labeled as a Minor otherwise.

Additionally, some noise can be added to those axioms. For example, after labeling

a person as an Adult or as a Minor, his or her age can be modified by a random value.

6.1.2 Learning the threshold between adults and minors

This first scenario shows the behaviour of the system while it tries to adjust the adaptor

a1 that defines the threshold between being Minor and being Adult as defined in the

previous subsection. The simulation will run for a number of iteration and, at each

iteration, a new set of training axioms will be randomly generated. Each of those sets

of axioms describes 30 Persons along with their age (randomly generated). Those

individuals are also labeled as Adult or as Minor according to their age and the correct

value of a1in that iteration. The adaptor a1 is initially set to the value of 10. The

validation system used in this simulation is only extracting feedback for adaptors that

generate inconsistencies. No feedback is generated for adaptors found to be correct.

Chapter 6. Evaluation 39

Values of a1 over multiple iterations

a1 Correct value

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

of iterations

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

v
a
lu
e
 o
f
a
1

Figure 6.2: Plot of the values of adaptor a1 across 40 iterations of the system (with

noise). The red squares indicate the value computed by the system, the blue circles

indicate the correct value for that iteration.

The red squares in figure 6.1 show the value of adaptor a1 across 40 iterations of the

system. The blue circles indicate the correct value that a1 should have in each iteration,

this value changes every 10 iterations to test if the system can adapt to changes in the

environment. At each iteration, a set of training axioms is generated and used to update

the original ontology (and therefore the value of a1). The updated ontology will then

become the original ontology in the following iteration. Figure 6.1 shows that under

these conditions the adaptor a1 can quickly converge to the correct value.

In some circumstances it might be necessary to consider the possibility that the

training axioms are subject to noise. To simulate noise in the data, the age of each

person in the training axioms is randomly modified by a value in the range [−5,+5].

Figure 6.2 shows the updates of adaptor a1 under the same conditions as in the previous

simulation, but with the addition of noise. It is possible to notice that the value of a1 is

still approaching its correct value but it cannot reach a stable convergence.

To reduce the influence of the noise on the convergence of the adaptors, it is pos-

sible to keep some learning history to use in the learning phase. Figure 6.3 shows the

value of a1 across 40 iterations of the system under the same conditions as before, but

using memory in the learning phase. More precisely, the VoLearnerImpl object used

is now allowed to keep in memory the two latest feedback examined, and to use them

while computing the updates. Comparing figure 6.3 with figure 6.2 it is possible to no-

tice that using some learning history makes the system having some confidence on the

Chapter 6. Evaluation 40

Values of a1 over multiple iterations

a1 Correct value

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

of iterations

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

v
a
lu
e
 o
f
a
1

Figure 6.3: Plot of the values of adaptor a1 across 40 iterations of the system (with

noise and using memory in the learning phase). The red squares indicate the value

computed by the system, the blue circles indicate the correct value for that iteration.

current value of the adaptors. This confidence makes it harder for the adaptors to adopt

small changes and consequently the effect of the noise on the updates of the adaptors

is reduced.

6.1.3 Learning the correct value for a cardinality restriction

The simulation described in the previous section was focused on updating an adap-

tor restricting the data property hasAge. The simulation presented in this section will

show how an adaptor that restricts cardinalities is updated. Considering again the on-

tology described in section 6.1.1, the concept of BusyParent is found to be dependent

on the adaptor a2 (BusyParent = Person and (parentO f min a2 Minor)). The con-

cept of RelaxedParent is dependent on a2 too. In fact, even though the definition of

RelaxedParent does not make use of a2, it make use of the concept of BusyParent

and therefore it is indirectly dependent on the adaptor a2. In the ontology used, a2 is

initialised with the value 1.

This simulation consists of 40 iterations of the system. For each of them a set of

training axioms is randomly generated according to the the correct value that a2 should

have in that iteration. Each set of training axioms contains the information about 10

instances of the BusyParent class, along with their children in number equal or greater

than a2. It also contains 10 instances of the class RelaxedParent, along with their

children (less than a2 of them being Minor).

Chapter 6. Evaluation 41

Values of a2 over multiple iterations

a2 Correct value

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

of iterations

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

v
a
lu
e
 o
f
a
2

Figure 6.4: Plot of the values of adaptor a2 across 40 iterations of the system. The red

squares indicate the value computed by the system, the blue circles indicate the correct

value for that iteration.

Figure 6.4 shows a run of this simulation. The red squares indicate the value of

a2 in each iteration. The blue circles indicate the correct value that a2 was supposed

to have in that iteration. This result shows that an adaptor restricting a cardinality (in

this case a2) can converge on its correct value, as long as the convergence implies an

increase in its value. If the convergence instead implies a reduction in the value of the

adaptor (as in the last 10 iterations of this simulation), the adaptor will not change. For

this reason, a2 is not able to adapt to the last change in the simulation, namely reducing

its value from 6 to 4.

The inability to reduce the value of a2, which might seem undesirable from a practi-

cal point of view, is a logical consequence of the Open World Assumption made by the

reasoner used (as discussed in section 4.1). Concerning cardinalities, in fact, the only

situation that could generate an inconsistency is when the maximum cardinality of a re-

lationship is violated. For example, if an instance I, belonging to class RelaxedParent,

is found to have 3 children that are Minor and the concept of BusyParent is defined as

all the persons with more than 2 children, then I will be classified also as a BusyParent.

Since the classes BusyParent and RelaxedParent are disjoint, an inconsistency will

arise. This inconsistency could then be solved increasing the value of a2. However,

no inconsistency will arise in this situation if a2 is found to be greater than its correct

value. To decrease its value, in fact, it would be necessary to prove that a certain car-

dinality does necessary have to be inferior than a2. However, under the Open World

Chapter 6. Evaluation 42

Assumption, the cardinalities for each kind of relationship are potentially infinite (un-

less otherwise stated).

A possible way to overcome this problem could be to use adaptors such as a2

in the definition of more than one concept. If an adaptor is used to define multiple

concepts, in fact, it is more likely that it will generate an inconsistency if it is found to

be incorrect.

The adaptor a2 is not the only one that the classes of BusyParent and RelaxedParent

depend on. In fact, the definition of the class BusyParent uses the definition of the class

Minor, which is dependent on the adaptor a1. For this reason, some of the solutions

that the system suggested (to solve the inconsistencies generated in this simulation)

involved a1. More precisely, if the value of a1 happened to be reduced, some individ-

uals that were at first classified as Minor would be then be classified as Adult. As a

consequence, an instance of class RelaxedParent that had too many Minor children,

after a decrease in the value of a1, might result having less children that are Minor (or

even none at all). Even though reductions to the adaptor a1 were suggested by the sys-

tem, the value of a1 remained close to its correct value. In fact, as soon as a1 diverges

from its correct value, instances of the Minor or Adult classes are no longer correctly

classified and inconsistencies are generated. Those inconsistencies are then detected

and the value of a1 is pushed again to converge toward its correct value.

6.2 Evaluation with web data

6.2.1 An ontology about places and distances

This second evaluation deals with an hypothetical scenario where the user of this sys-

tem is a company that owns libraries in cities around the world. This company is

interested in developing an automatic system to discover cities where it can be prof-

itable to open a new library. More specifically, given a city X , the system could look

for available semantic information about that city (for example from sources such as

DBpedia or Google) and use it to determine if X can be considered a profitable place

to open a new library in. This system could be used to select, out of a large number

of cities, a small subset of them that could be potentially profitable for business. This

subset could then be analysed by human experts to decide if opening or not a new

library in one of those cities.

In a real scenario, many factors might be used to make such choice. In this sim-

Chapter 6. Evaluation 43

ulation however, for simplicity, only one factor will be considered. A city will be

classified as profitable to open a business if there are only few competitors libraries

near the city centre. The concept of near could vary significantly in different contexts.

For example, it usually depends on the mean of transport that can be used to cover a

distance (on foot, 5 kilometers might seem a long distance but by car they might seem

a short one). In the centre of a city, potential customers of books are assumed to reach a

library on foot. Therefore in this context the concept of “near” should be interpreted as

a walking distance. However, even after this clarification, two vague concepts remain

undefined. How many libraries should there be in a city centre to be able to say that

they are “too many”? And what counts as near? How many meters away is a “distant”

place?

These vague concepts are defined in an OWL ontology using two adaptors. The first

one is c, it determines the maximum number of nearby libraries that a place considered

profitable can have. The second one is d, it determines the maximum number of meters

that two nearby places can have in between. This ontology uses a ternary relation to

define distances. In logic, this relation could be expressed as: distance(x,y,z) meaning

that there are z meters between place x and place y. OWL ontologies, however, support

only binary relations. For this reason the concept of distance cannot be represented as

a relation but it must be represented as a class having, as properties, two places and a

measure of distance.

The most important definitions contained in the original ontology used in this sim-

ulation are the following:

• SpatialT hing: a general class that represents a real place

• Distance=(distBetween exactly 2 SpatialT hing) and (distMeasure exactly 1 integer):

this definition states that an instance of class Distance should be related to two

SpatialT hing (the places between which the distance is computed) and to one

integer (the meters between the two places).

• CloseDistance = Distance and (distMeasure only integer [≤ d]): if there is a

CloseDistance between two places, then they can be considered near. This def-

inition states that a CloseDistance is a Distance that measures no more than d

meters.

• The definition of Pro f itablePlace can be easily expressed in natural language as

follows: a place can be considered profitable if there are no more than c libraries

Chapter 6. Evaluation 44

nearby. Its definition, expressed in Manchester syntax, is displayed below. This

definition of Pro f itablePlace might appear to be more complex than expected.

This is due to the fact that the concept of “near” cannot be expressed as a relation

but it has to be represented as a class.

Pro f itablePlace = SpatialT hing and

(hasDistance max c (CloseDistance and (distBetween some library)))

• library: the instances of this class represent real libraries.

Having defined the original ontology used, the next section will describe how the train-

ing axioms are extracted from real web data.

6.2.2 The training axioms generated using web data

In order to learn the proper values to give to the adaptors c and d, a series of train-

ing axioms is fed to the system. These axioms contain information about places

and about the distances between them. Moreover, some places might be classified as

Pro f itablePlace or as library and some distances might be classified as CloseDistance.

We could imagine that for some cities, it is already known that they are profitable. For

example, a human expert already classified some of them, or perhaps they are cities

where a profitable business is already present. The city centre of those cities can then

be classified as a Pro f itablePlace and then additional information about that city can

be extracted using web data. This information is then converted into OWL axioms and

treated as a set of training axioms. In this simulation, the city centres of the 30 largest

cities of the United Kingdom are assumed to be profitable places for the opening a

new library. This is an arbitrary assumption adopted just for the purpose of generating

plausible training axioms.

For each of those cities X a set of training axioms is generated. The coordinates

used to determine the position of the city centre of city X will be extracted from DB-

pedia [4]. This city centre will then be classified as a Pro f itablePlace. The service

offered by Google Places API [17] will then be used to determine the locations of li-

braries within 2 kilometers from the city centre. The distance between each of those

libraries and the city centre is calculated using the service offered by the Google Dis-

tance Matrix API [16].

For each library l that were found to be near the city centre, the Google Places API

provides the name of a location p “near” l. In this simulation I adopted the simplified

Chapter 6. Evaluation 45

assumption that if a place is considered “near” by the Google Places API, then it should

be considered near also by the original ontology that this simulation is using. For this

reason, the distance (in meters) between p and l is computed using the Google Distance

Matrix API and then it is classified as as CloseDistance.

For each city, an amount of information is extracted from web data as it was just

discussed. This information is then converted into OWL axioms to form the set of

training axioms that the system will use to adjust the values of the adaptors c and d.

The next section presents the results of the simulation performed using these training

axioms.

6.2.3 The results of the simulation

This simulation consists of 30 iterations of the system. In each iteration, a city X is

considered and set of training axioms is generated as described in the previous sec-

tion. This set of axioms is then used to update the original ontology into an updated

ontology. The updated ontology generated is then used as the original ontology in the

following iteration of the system. The names of the 30 cities used in this simulation

can be found in appendix A.

This simulation used a VoValidator object that computes only feedback about adap-

tors found to generate inconsistencies. The VoLearner object used is allowed to have

memory about previous iterations of the system and it can store in memory up to 15

previous feedback objects. The values that adaptors d and c held in each iteration of

the system can be seen in figures 6.6 and 6.5. Other statistics about these adaptors can

be found in table 6.1.

Figure 6.5 shows the evolution of adaptor d, across the 30 iterations of the system.

To test if an adaptor can quickly adjust its value, d is initialised with the incorrect value

of 0. What could be the correct value for d will be discussed later in this section. In

the meanwhile it is reasonable to assume that 0 is incorrect. In fact, if the value of d

is 0, every distance will be considered a long distance and no place will be considered

near.

After one iteration d increased to the value 383 and after two to the value 1838. In

this example the adaptor d managed, in one iteration, to reach a more plausible value

to determine what counts as far for a person walking on foot (expressed in meters).

From the second iteration to the last one, d held values ranging from 1360 to 2517.

The information obtained from the web is subject to noise and missing information.

Chapter 6. Evaluation 46

Values of d over multiple iterations

d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

of iterations

0

250

500

750

1,000

1,250

1,500

1,750

2,000

2,250

2,500

v
a
lu
e
 o
f
d

Figure 6.5: Plot of the values of adaptor d across 30 iterations of the system

Values of c over multiple iterations

c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

of iterations

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

v
a
lu
e
 o
f
c

Figure 6.6: Plot of the values of adaptor c across 30 iterations of the system

For example, several distances measuring more than 10 kilometers were classified as

CloseDistance. The sigmoid function used in the learning phase (as described in sec-

tion 5.4) reduced the effect that values greatly differing from the mean have on the

value of the adaptors. Without this reduction, the value of d would have been less

stable and it could have suddenly changed its value of several thousands units in just

one iteration.

It is possible to notice that, compared to the first 10 iterations, the adaptor d started

to become more stable in the last 20 iterations. This is a resulting effect of the memory

accumulated from the previous iterations. This memory increases the confidence that

d had on its current value and it reduces its flexibility to change.

Chapter 6. Evaluation 47

Adaptors: d c

Starting value 0 1

Ending value 1360 4

Min value computed 383 1

Max value computed 2517 4

Average value 1778.7 2.8

Estimated correct value 1325 2.49 or 3.54

Difference from the correct value (% of the standard deviation) 4% 162% or 39%

Table 6.1: Statistics about the evolution of adaptors d and c

Figure 6.6 shows the evolution of adaptor c (concurrent to the evolution of d shown

in figure 6.5) during the 30 iterations of the system. Changes in this parameter occurred

when a city centre, classified as Pro f itablePlace was found to have too many (more

than c) libraries nearby thus violating the definition of class Pro f itablePlace. Increas-

ing the value of c is a possible way to solve this inconsistency. Another possibility

would be to reduce the value of d as this would result in less libraries to be considered

“near”.

As already observed in section 6.1.3, an adaptor that is only used to restrict a cardi-

nality (in this case d) might not be able to reduce its value. In figure 6.6, in fact, it can

be seen that the adaptor d is only increasing. This problem can be partially solved by

initializing to a low value an adaptor that is only restricting cardinalities, and letting it

increase through the iterations. In this simulation, d was initialised with the value 1.

6.2.4 The correct values for the adaptors

This system ended its series of iterations reaching the conclusion that if a place in the

centre of a city has less than 4 libraries within 1.36 kilometers, then it is probably a

profitable place where to open a new library. In order to estimate if these values are

correct, the average number of libraries near a city centre and the average distance

between near places should be computed considering all the training axioms involved

in the simulation.

The average measure of the CloseDistance instances considered is 504 meters, and

the standard deviation is 821 (these values are computed reducing the importance of

samples too far away from the mean as described in section 5.4). Adaptor d aims to

Chapter 6. Evaluation 48

capture the concept of how many meters away is a far place. For this reason we could

consider as its “correct” value, the average measure of a CloseDistance instance plus

the standard deviation observed. Distances that are found to exceed this measure could

be intuitively considered “far distances”. After these consideration, we could state

that in this simulation the correct value for adaptor d is 504+821 = 1325. The value

actually computed by the system for adaptor d, after completing all the iterations of the

system, is 1360. We can consider, as a measure of error, the percentage of the standard

deviation that equals the difference between the correct value and the value actually

computed. In this simulation, the computed value differs from the correct value by

4% of the standard deviation. The adaptor d then managed to approximate the correct

value with a 4% error.

It is possible to identify a correct value for adaptor c in a similar way. We could

claim that the correct value for c is the average number of libraries near each city cen-

tre, plus its standard deviation. Before computing this value, it is necessary to state

what counts as “near”. Using the “correct” definition of near discussed before, we

could consider a place near if it is less than 1325 meters away. After this clarification,

the average number of libraries near the city centre (for the cities examined) is 1.56,

with standard deviation 0.93 (as before, values far from the mean are reduced in impor-

tance by a sigmoid function). The correct value for c can then be said to be 2.49. The

value that was computed for c after all the iterations of the system is 4, which differs

from the correct value by 162% of the standard deviation.

One of the main reasons to explain this large error is that it is computed assuming

the “correct” definition of near (a place more than 1325 meters away). However, during

the iterations of the system, the concept of near was different. In fact the correct value

for adaptor d was only approximated in the end. The average value of d across the 30

iterations of the system is instead 1778.

We could now consider an alternative interpretation of the correct value for adaptor

c, no longer based on the correct definition of near (with d = 1325) but using the defi-

nition that in practice (in average) was used during the simulation (with d = 1778). In

this case the average number of libraries near the centre of a city is 2.37, with standard

deviation 1.17. The correct value for d in this case is 3.54. The value computed for

d at the end of the system (4) differs from the correct value by 39% of the standard

deviation.

Chapter 6. Evaluation 49

6.2.5 Extracting feedback about correct adaptors

The simulations discussed so far computed and used feedback only about incorrect

adaptors involved in inconsistencies. In appendix C it is possible to find the results of

a simulation that extracted also feedback from adaptors found to be correct. The most

significant difference in the results in this variant of the simulation is that the average

value of both adaptors across the iterations is significantly reduced. In this variant, in

fact, both average values are below the correct ones. In the simulation described before

(that did not extract feedback about correct adaptors) instead, the average values for

both parameters were above their correct values. The reason for this difference is that

feedback about a correct adaptor will be used, during the learning phase, to make the

relations it restricts “more restrictive”. In this situation, since both adaptors were used

to restrict the maximum value of a relation, this maximum value was reduced (making

it more restrictive).

The effects of extracting feedback about correct adaptors did not result in a sig-

nificant improvement in the precision of the system. This precision is estimated by

calculating the difference between the correct value and one actually computed for

each adaptor (these values can be found in table C.1 for the new variant and in table

6.1 for the old one). For this reason, this additional process of extracting feedback

about correct adaptors appears to be unnecessary and it can be avoided in order to save

computational resources. This process could be used, however, if it is desirable to

update the values of the adaptors even if few or no inconsistencies are generated.

6.3 Note on the computational complexity

This system uses automatic OWL reasoners (such as Pellet and HermiT) and therefore

its computational complexity is dependent on the size (the number of axioms) of the

original ontology and of the training axioms used. The specific implementation of

those reasoners, and the amount of axioms they have to reason with, are the most

important factors that determine this complexity.

Generating the explanations for an inconsistent ontology is the operation that con-

sumes most of the resources. This process identifies sets of axioms, subsets of the

ontology used, that are responsible for an inconsistency. Only after an explanation

is generated the system will check if it contains vague concepts. If this is the case,

the system will attempt to extract feedback from the inconsistency. An explanation

Chapter 6. Evaluation 50

will typically contain only a small subset of axioms and thereby only a small set of

adaptors. Therefore, extracting feedback from an explanation is a significantly faster

process compared to the process of generating the explanation in the first place. For

this reason, the number of adaptors (and consequently the number of vague concepts

used in an ontology) are not important factors to determine the computational com-

plexity of the system. If desirable, all the cardinality and data restrictions used in an

ontology could make use of adaptors.

To improve the performances of the system, efficient OWL reasoners should be

used. Additionally, the size of the original ontology and/or the size of the training

axioms can be reduced (as this will reduce the time spent by the reasoning process). A

possibility to reduce the size of a large set of training axioms is to divide it into smaller

subsets. In the simulation presented in section 6.2, for example, the training axioms

computed for each city were kept separate from each other and they were used one at

a time. To reduce the size of the original ontology, it is possible to remove some if its

parts that are known to be unrelated with the axioms that are dependent on adaptors.

Reducing the size of the axioms considered by the system, however, can reduce

the amount of information that it is possible to infer from them. In this situation less

inconsistencies might be generated and consequently less feedback will be produced

during the validation phase. For this reason, the size of the original ontology and of

the training axioms should be reduced only if necessary.

Chapter 7

Conclusion

7.1 Concluding remarks

Ontologies are a formal representation of knowledge. But knowledge can often be

imprecise and vague. Nevertheless, most of the current ontological languages, such as

OWL, do not provide solutions to deal with ontological vagueness. In a static context,

it might be possible to ignore this issue. In a dynamic environment, however, it is

inevitable to deal with the effects of vagueness. The problem of vague ontological

concepts in fact, is identified as central both in the fields of Ontology Evolution and

Ontology Alignment.

This work presented a novel approach to deal with vagueness: a vague concept is

defined as a concept that receives a total interpretation which, however, can be subject

to change. More precisely, the meaning of a vague concept is dependent on a number

of values, called adaptors, which can be automatically updated. These adaptors can be

used to define cardinality restrictions and data range restrictions for OWL Properties.

The definitions of the vague concepts of an ontology (here called original ontol-

ogy) can be automatically updated by validating the original ontology against a set

of training axioms, generating an updated ontology. Inconsistencies generated by the

union of the original ontology and the training axioms are interpreted as a misalign-

ment between those two sets of ontological information. This misalignment can be

reduced solving these inconsistencies by modifying the values of the adaptors used in

the original ontology. It is also possible to update the definitions of the vague concepts

(and consequently the values of the adaptors they depend on) even when no inconsis-

tencies arise. If the axioms of another ontology are used as training axioms for the

original ontology, then the update will result in an improved alignment between the

51

Chapter 7. Conclusion 52

two ontologies.

In order to compute this update, a framework was proposed. This framework de-

fines the three main phases that are required to update the vague concepts of an on-

tology. The first phase is responsible for computing the feedback about the adaptors.

In particular, this phase should detect if inconsistencies between the original ontology

and the training axioms are caused by some of the adaptors, and if it is possible to

solve them by changing the values of those adaptors. The second phase is responsible

for using the feedback computed in the previous phase to determine suitable updates

for the adaptors. The final phase consists in applying those updates to the original

ontology generating an updated ontology, which contains updated definitions of the

vague concepts.

A possible implementation of this framework was then described and evaluated

using two different simulations. The first simulation used artificially generated training

axioms while the second one extracted them from web sources. The results of these

simulations show that if the training axioms contain sufficient information to provide

a precise delineation of a vague concept, then the adaptors used by this vague concept

can quickly (less than 5 iterations) converge to their correct value (the value required

to define the correct delineation of the vague concept). A quick approximation of their

correct value can also be achieved if the training axioms are subject to noise or if they

contain only partial information about the delineation that the vague concept should

adopt. These preliminary results suggest that this framework could be effectively used

to update the definitions of vague concepts in order to evolve a single ontology or to

improve the extension-based alignment between multiple ontologies.

7.2 Future work

The preliminary results presented in this dissertation could be extended by a more

accurate evaluation of this framework. A number of use cases could be designed to

evaluate the efficiency of this system using more complex and realistic ontologies. In

particular, it would be interesting to study the effect that interconnections between

vague concepts would have on the evolution of their definition. In fact, if vague con-

cepts are defined by other vague concepts or if they make use of the same adaptors,

then a network of interdependence between the adaptors would emerge. This network

will influence the evolution of the adaptors and consequently of the definitions of the

vague concepts. It is possible that the convergence of the adaptors to their correct

Chapter 7. Conclusion 53

values could be enforced by this network.

The framework presented in this simulation could also be extended in a number

of different directions. Minor extensions includes increasing the number of data types

supported and designing a more general learning strategy to use during the learning

phase. A major extension to this framework would be to integrate parts of its func-

tionalities into an automatic reasoner. In fact the extraction of feedback during the

validation phase could be done more efficiently if it is done simultaneously with the

reasoning process and not after. It is possible that when a reasoner detects an in-

consistency it would have already collected enough information to determine if that

inconsistency is due to the value of an adaptor or not.

Another major extension to this framework consists in allowing other parts of the

axioms to change as a result of the evolution process. At the moment adaptors can only

be numerical values used in restrictions. In theory however, other parts of an axiom

defining a vague concept could contribute to its delineation. For example, adaptors

could be extended to have class expressions as values.

Appendix A

List of cities used in the simulation

In the simulation described in section 6.2.3, thirty cities of the United Kingdom were

used to generate training axioms. The names of the cities used are the following (in

the order they were used in the simulation):

1 London

2 W e s t m i n s t e r

3 Edinburgh

4 Wake f i e ld

5 Glasgow

6 Manches t e r

7 Plymouth

8 Swansea

9 P o r t s m o u t h

10 York

11 Manches t e r

12 Birmingham

13 Leeds

14 S h e f f i e l d

15 B r a d f o r d

16 L i v e r p o o l

17 B r i s t o l

18 C a r d i f f

19 Coven t ry

20 Not t ingham

21 L e i c e s t e r

22 B e l f a s t

23 B r i g h t o n

24 Wolverhampton

25 Derby

26 Southampton

27 Aberdeen

28 Oxford

29 P e t e r b o r o u g h

30 Dundee

54

Appendix B

Computing feedback from a consistent

ontology

The following algorithms describe how to compute feedback from a consistent ontol-

ogy about adaptors found to be correct, as described in section 5.3.3.

Algorithm B.1 Algorithm to compute feedback from a consistent ontology

1 computeFeedbackFromCons i s t ency (o n t o l o g y)

2 f e e d b a c k = empty s e t

3 v a g u e _ c l a s s e s = c l a s s e s o f t h e o n t o l o g y d e p e n d e n t on a d a p t o r s

4 n o t _ v a g u e _ o n t o l o g y = o n t o l o g y w i t h o u t axioms i n v a g u e _ c l a s s e s

5 FOR EACH v _ c l a s s IN v a g u e _ c l a s s e s

6 members = members o f v _ c l a s s found i n t h e o n t o l o g y

7 FOR EACH i n d i v i d u a l IN members

8 c l a s s _ a s s e r t i o n = a s s e r t i o n t h a t i n d i v i d u a l i s a member o f c l a s s v _ c l a s s

9 IF n o t _ v a g u e _ o n t o l o g y e n t a i l s c l a s s _ a s s e r t i o n

10 r e d u c e d _ o n t o l o g y = n o t _ v a g u e _ o n t o l o g y

11 WHILE r e d u c e d _ o n t o l o g y e n t a i l s c l a s s _ a s s e r t i o n

12 e x p l a n a t i o n s = axioms of r e d u c e d _ o n t o l o g y t h a t e n t a i l c l a s s _ a s s e r t i o n

13 r e d u c e d _ o n t o l o g y = r e d u c e d _ o n t o l o g y w i t h o u t axioms i n e x p l a n a t i o n s

14 ENDWHILE

15 r e d u c e d _ o n t o l o g y = r e d u c e d _ o n t o l o g y p l u s axioms i n v a g u e _ c l a s s e s

16 IF r e d u c e d _ o n t o l o g y e n t a i l s c l a s s _ a s s e r t i o n

17 f e e d b a c k ADD c o m p u t e F e e d b a c k F o r C o r r e c t E n t a i l m e n t (r e d u c e d _ o n t o l o g y ,

c l a s s _ a s s e r t i o n)

18 ENDIF

19 ENDIF

20 ENDFOR

21 ENDFOR

22 RETURN f e e d b a c k

55

Appendix B. Computing feedback from a consistent ontology 56

Algorithm B.2 Algorithm to compute feedback for a particular class assertion in a

consistent ontology

1 c o m p u t e F e e d b a c k F o r C o r r e c t E n t a i l m e n t (r e d u c e d _ o n t o l o g y ,

c l a s s _ a s s e r t i o n)

2 f e e d b a c k = empty s e t

3 a d a p t o r _ s e t = s e t o f a d a p t o r s i n r e d u c e d _ o n t o l o g y

4 FOR EACH a d a p t o r IN a d a p t o r _ s e t

5 a l t e r n a t i v e s = empty s e t

6 r e l a t i o n s _ r e s t r i c t e d = s e t o f r e l a t i o n s r e s t r i c t e d by a d a p t o r

7 FOR EACH r e l a t i o n IN r e l a t i o n s _ r e s t r i c t e d

8 a l t e r n a t i v e s ADD v a l u e s found as t a r g e t s o f t h e r e l a t i o n i n

r e d u c e d _ o n t o l o g y

9 ENDFOR

10 v a l u e s _ t h a t _ k e e p _ e n t a i l m e n t = empty s e t

11 v a l u e s _ t h a t _ r e m o v e _ e n t a i l m e n t = empty s e t

12 FOR EACH v a l u e IN a l t e r n a t i v e

13 m o d i f i e d _ o n t o l o g y = s u b s t i t u t e (a d a p t o r , va lue , r e d u c e d _ o n t o l o g y)

14 IF m o d i f i e d _ o n t o l o g y e n t a i l s c l a s s _ a s s e r t i o n

15 v a l u e s _ t h a t _ k e e p _ e n t a i l m e n t ADD v a l u e

16 ELSE

17 v a l u e s _ t h a t _ r e m o v e _ e n t a i l m e n t ADD v a l u e

18 ENDIFELSE

19 ENDFOR

20 IF v a l u e s _ t h a t _ r e m o v e _ e n t a i l m e n t i s n o t empty

21 IF v a l u e s _ t h a t _ k e e p _ e n t a i l m e n t i s n o t empty

22 b e s t _ v a l u e = v a l u e from v a l u e s _ t h a t _ k e e p _ e n t a i l m e n t t h a t

d i f f e r s t h e most from t h e c u r r e n t v a l u e o f a d a p t o r

23 f e e d b a c k ADD f e e d b a c k a b o u t a d a p t o r w i th b e s t _ v a l u e as a

p o s s i b l e a l t e r n a t i v e v a l u e

24 ENDIF

25 ENDIF

26 removeDominatedFeedback (f e e d b a c k)

27 ENDFOR

28 RETURN f e e d b a c k

Appendix C

Results of extracting feedback from

correct adaptors

The following table and figures show the evolution of adaptors d and c. These plots

refer to the simulation described in section 6.2 with the following variant: the feedback

about correct adaptors was extracted in the validation phase and used in the learning

phase.

Adaptors: d c

Starting value 0 1

Ending value 1153 3

Min value computed 383 1

Max value computed 1542 3

Average value 932.6 2

Estimated correct value 1325 2.49 or 3.54

Difference from the correct value (% of the standard deviation) 20% 54% or 46%

Table C.1: Statistics about the evolution of adaptors d and c

57

Appendix C. Results of extracting feedback from correct adaptors 58

Values of d over multiple iterations

d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

of iterations

0

100

200

300

400

500

600

700

800

900

1,000

1,100

1,200

1,300

1,400

1,500

1,600
v
a
lu
e
 o
f
d

Figure C.1: Plot of the values of adaptor d across 30 iterations of the system (extracting

also the feedback about correct adaptors)

Values of c over multiple iterations

c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

of iterations

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

v
a
lu
e
 o
f
c

Figure C.2: Plot of the values of adaptor c across 30 iterations of the system (extracting

also the feedback about correct adaptors)

Bibliography

[1] Peter Achinstein. Theoretical terms and partial interpretation. The British Journal

for the Philosophy of Science, 14(54):pp. 89–105, 1963.

[2] Fritz Baader, Ian Horrocks, and Ulrike Sattler. Description logics. In Frank van

Harmelen, Vladimir Lifschitz, and Bruce Porter, editors, Handbook of Knowl-

edge Representation, chapter 3. Elsevier, 2007.

[3] David Bell, Guilin Qi, and Weiru Liu. Approaches to inconsistency handling in

description-logic based ontologies. In On the Move to Meaningful Internet Sys-

tems 2007: OTM 2007 Workshops, volume 4806 of Lecture Notes in Computer

Science, pages 1303–1311. Springer Berlin / Heidelberg, 2007.

[4] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker,

Richard Cyganiak, and Sebastian Hellmann. Dbpedia - a crystallization point for

the web of data. Web Semantics: Science, Services and Agents on the World Wide

Web, 7(3):154 – 165, 2009.

[5] Nicolao Bonini, Daniel Osherson, Timothy Williamson, and Riccardo Viale. On

the psychology of vague predicates, 1999.

[6] Alan Bundy and Fiona McNeill. Representation as a fluent: An AI challenge for

the next half century. IEEE Intelligent Systems, 21(3):85–87, May 2006.

[7] Namyoun Choi, Il-Yeol Song, and Hyoil Han. A survey on ontology mapping.

SIGMOD Rec., 35:34–41, September 2006.

[8] Nick Drummond and Rob Shearer. The Open World Assumption. In eSI Work-

shop: The Closed World of Databases meets the Open World of the Semantic

Web, 2006.

[9] Kit Fine. Vagueness, truth, and logic. Synthese, 30:265–300, 1975.

59

Bibliography 60

[10] Giorgos Flouris, Dimitris Manakanatas, Haridimos Kondylakis, Dimitris Plex-

ousakis, and Grigoris Antoniou. Ontology change: Classification and survey.

Knowl. Eng. Rev., 23:117–152, 2008.

[11] Peter Haase and Ljiljana Stojanovic. Consistent evolution of owl ontologies. In

Asunción Gómez-Pérez and Jérôme Euzenat, editors, The Semantic Web: Re-

search and Applications, volume 3532 of Lecture Notes in Computer Science,

pages 182–197. Springer Berlin / Heidelberg, 2005.

[12] Jeff Heflin and James A. Hendler. Dynamic ontologies on the web. In Proceed-

ings of the Seventeenth National Conference on Artificial Intelligence and Twelfth

Conference on Innovative Applications of Artificial Intelligence, pages 443–449.

AAAI Press, 2000.

[13] Matthew Horridge and Sean Bechhofer. The OWL API: A Java API for Working

with OWL 2 Ontologies. In OWLED 2009, 6th OWL Experienced and Directions

Workshop, 2009.

[14] Matthew Horridge and Peter F. Patel-Schneider. Owl 2 web ontology

language: Manchester syntax. Technical report, W3C, 2009. URL

http://www.w3.org/TR/owl2-manchester-syntax/.

[15] Jason Hunter and Brett McLaughlin. JDOM. Website accessed on: 12/08/2011,

http://jdom.org/.

[16] Google Inc. The Google Distance Matrix API. Website accessed on: 12/08/2011,

http://code.google.com/apis/maps/documentation/distancematrix/.

[17] Google Inc. The Google Places API. Website accessed on: 12/08/2011,

http://code.google.com/apis/maps/documentation/places/.

[18] Aditya Kalyanpur, Bijan Parsia, Matthew Horridge, and Evren Sirin. Finding

all justifications of owl dl entailments. In Proceedings of the 6th international

The semantic web and 2nd Asian conference on Asian semantic web conference,

pages 267–280, 2007.

[19] A.M. Khattak, Z. Pervez, Sungyoung Lee, and Young-Koo Lee. After effects of

ontology evolution. In Future Information Technology (FutureTech), 2010 5th

International Conference on, pages 1–6, 2010.

Bibliography 61

[20] Sik Chun Lam, Jeff Z. Pan, Derek Sleeman, and Wamberto Vasconcelos. A

fine-grained approach to resolving unsatisfiable ontologies. In Proceedings of

the 2006 IEEE/WIC/ACM International Conference on Web Intelligence, pages

428–434. IEEE Computer Society, 2006.

[21] Ling Liu and M. Tamer Özsu. Encyclopedia of Database Systems. Springer

Publishing Company, Incorporated, 1st edition, 2009.

[22] Thomas Lukasiewicz and Umberto Straccia. Managing uncertainty and vague-

ness in description logics for the semantic web. Web Semantics: Science, Services

and Agents on the World Wide Web, 6(4):291 – 308, 2008.

[23] Yinglong Ma, Beihong Jin, and Yulin Feng. Dynamic evolutions based on on-

tologies. Knowledge-Based Systems, 20(1):98–109, 2007.

[24] N. Shadbolt, W. Hall, and T. Berners-Lee. The semantic web revisited. Intelligent

Systems, IEEE, 21(3):96 –101, 2006.

[25] Rob Shearer, Boris Motik, and Ian Horrocks. HermiT: A Highly-Efficient OWL

Reasoner. In Proc. of the 5th Int. Workshop on OWL: Experiences and Directions

(OWLED 2008 EU), 2008.

[26] Pavel Shvaiko, Fausto Giunchiglia, Marco Schorlemmer, Fiona Mcneill, Alan

Bundy, Maurizio Marchese, Mikalai Yatskevich, Ilya Zaihrayeu, Vanessa Lopez,

Marta Sabou, Ronny Siebes, Spyros Kotoulas, and Coordinator Pavel Shvaiko.

OpenKnowledge Deliverable 3.1.: Dynamic ontology matching: a survey, 2006.

[27] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden

Katz. Pellet: A practical owl-dl reasoner. Web Semantics: Science, Services and

Agents on the World Wide Web, 5(2):51 – 53, 2007.

[28] Kees van Deemter. Not Exactly: in Praise of Vagueness. Oxford University Press,

2010.

[29] W3C OWL Working Group, editor. OWL 2 Web Ontology Language Document

Overview. W3C, 2009. URL http://www.w3.org/TR/owl2-overview/.

[30] Shenghui Wang, Balthasar Schopman, Lourens van der Meij, Stefan Schlobach,

and Frank van Harmelenr. Automatic subject alignment experiments. TELplus

project, 2010.

Bibliography 62

[31] Fouad Zablith. Dynamic ontology evolution. In ISWC Doctoral Consortium,

2008.

