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Abstract

The Shapes Constraint Language (SHACL) is the recent W3C recommendation
language for validating RDF data, by verifying certain shapes on graphs. Previous work
has largely focused on the validation problem, while the standard decision problems of
satisfiability and containment, crucial for design and optimisation purposes, have only
been investigated for simplified versions of SHACL. Moreover, the SHACL specification
does not define the semantics of recursively-defined constraints, which led to several
alternative recursive semantics being proposed in the literature. The interaction between
these different semantics and important decision problems has not been investigated yet.
In this article we provide a comprehensive study of the different features of SHACL,
by providing a translation to a new first-order language, called SCL, that precisely
captures the semantics of SHACL. We also present MSCL, a second-order extension of
SCL, which allows us to define, in a single formal logic framework, the main recursive
semantics of SHACL. Within this language we also provide an effective treatment of
filter constraints which are often neglected in the related literature. Using this logic we
provide a detailed map of (un)decidability and complexity results for the satisfiability
and containment decision problems for different SHACL fragments. Notably, we prove
that both problems are undecidable for the full language, but we present decidable
combinations of interesting features, even in the face of recursion.

1. Introduction

Data validation is the process of ensuring data is clean, correct, and useful. The
Shapes Constraint Language (SHACL, for short) [26] is a recent W3C recommendation
language for validation of data in the form of RDF graphs [12] and is quickly becoming
an established technology. Similar to ontology languages like OWL [56], SHACL can be
seen as a language that strictly imposes a schema on graph data models, such as RDF,
which are inherently schemaless. Unlike ontology languages, SHACL focuses more on
the structural properties of a graph rather than the semantic ones, and it is not intended
for inference. A SHACL shape graph, which we will call SHACL document in this
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paper, validates an RDF graph by evaluating it against a set of constraints. In SHACL,
constraints are modelled as a set of shapes which, intuitively, define the structure that
certain entities in the graph must conform to.

Despite its ongoing widespread adoption (see [39] for a recent review), many aspects
of SHACL remain unexplored. Several important theoretical properties of the language
have not been studied. Among these are the decidability and complexity of satisfiability
and containment of SHACL documents, and this is the main focus of this work. These
problems have important roles in the design and optimisation of SHACL applications.
For example, satisfiability can support an editor that checks whether a developing
SHACL document becomes inconsistent, or an integration system that tracks conflicts
when integrating datasets subject to different SHACL documents. Containment (and
consequently document equivalence, which is based on containment) studies whether one
document is subsumed by another one and has important applications in optimisation
and minimisation of documents [1], detecting independence of documents from data
updates [32], data integration [31, 27], maintenance of integrity constraints [23], and
semantic data caching [14]. We study both problems for entire documents and individual
shapes. At the level of shapes, an unsatisfiable shape constraint might not necessarily
cause the unsatisfiability of a whole SHACL document, but it is likely an indication
of a design error. Being able to decide containment/equivalence for individual shapes
offers more design choices to the author of a SHACL document and it is an avenue
for optimization. Moreover, shape containment is a problem that has been studied in
literature in connection with important practical applications such as type checking in
software [30, 29].

Note that satisfiability has two prevalent versions in the literature: finite and in-
finite/unrestricted. These adjectives refer to the size of an underlying model (here a data
graph) that whenever exists proves the theory (e.g., SHACL document) satisfiable. In
practice, finite satisfiability is what we are usually interested in. Commonly however,
infinite satisfiability is a starting point for theoretical studies as, being less restricted,
it is often considered easier to address. Indeed, very often the techniques for deciding
finite satisfiability are revealed through studying the infinite case as a first approximation.
As well, if the infinite case provides a quick decidability result then finite decidability
also holds. Moreover, there are cases where a theory describes only part of the model
(possibly finite), but there is an infinite domain for numbers or other parts of the theory.
In this case (which is possible for SHACL), unrestricted satisfiability is of our interest.
Other practical cases that might imply infinite models, appear in the face of reasoning
with intensional knowledge, e.g., ontology TBoxes (see [41] for a work on SHACL in
combination with reasoning).

Additionally, the W3C specification does not define the semantics of SHACL in its
full generality, since it does not describe how to handle recursive constraints. Recent
work [11] has suggested a theoretical modelling of the language in order to formally
define a recursive semantics; the same work also studied the complexity of the validation
problem. Alternative recursive semantics for SHACL have been further suggested in [4].

In this article, we extend [40] to capture SHACL semantics using mathematical
logic. This is an important contribution on its own, as it offers a standard and well-
established modelling of the language, where SHACL documents are translated into
logical sentences that are interpreted in the usual way. This makes SHACL semantics
easier to understand and study compared to existing approaches that rely on auxiliary
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ad hoc constructs and functions. In particular, [11] defines validation based on the
existence of an assignment of SHACL shapes to data nodes. This assignment captures
which shapes are satisfied/violated by which nodes, while at at same time the target nodes
of the validation process are verified. As [11] argues, in the face of SHACL recursion one
may consider partial assignments, where the truth value of a constraint at some nodes
may be left unknown. In addition, [4] identifies two major ways, called brave and cautious
validation, to verify the target nodes during the validation process. Deciding between
partial or total assignments, and between brave or cautious validations gives rise to four
different semantics for recursive SHACL, each with its own definition of validation. Using
our logical approach we are able to capture all four semantics in a clear and uniform way,
providing for a better understanding of SHACL features and taking advantage of the
rich field of computational logic.

Our contributions are the following:

• In Theorem 1, we prove that all four major semantics of SHACL coincide for non-
recursive documents, and in Theorem 2 that validation under the partial semantics
(brave or cautious) reduces to validation under the corresponding total semantics,
for all SHACL documents. This reduction allows us later to focus only on total
semantics, such that any positive decidability and complexity results for total carry
over to partial semantics. (Section 3)

• We formalise non-recursive SHACL semantics by translating to a novel fragment
of first-order logic (FOL) extended with counting quantifiers and a transitive
closure operator; we call this logic SCL for Shapes Constraint Logic. The provided
translation from SHACL to SCL is actually an one-to-one correspondence between
these languages and we have identified eight prominent SHACL features that
translate to particular restrictions of SCL. In effect, SCL is the logical counterpart
of SHACL; this is exhibited by Theorem 3 which proves that faithfulness of an
assignment in SHACL, a central notion used to define all semantics, translates to
satisfiability in SCL. (Section 4)

• We extend SCL into a fragment of monadic second-order logic, called MSCL, that
intuitively allows us to impose conditions over the space of all possible assignments
and captures all four major recursive SHACL semantics. We also present Proposi-
tion 1 which considers ∃SCL, the existential fragment of MSCL, expressive enough
to capture several interesting problems; Proposition 1 states that ∃SCL and SCL
are equisatisfiable, and we can only focus on SCL when studying decidabilty and
complexity. We also demonstrate how our logical framework generalises previous
languages designed to model SHACL. (Section 4)

• We present a series of results (Corollaries 1-6 and Lemma 4) that reduce SHACL
satisfiability and containment under all semantics to the MSCL satisfiability prob-
lem. Going further, the problems of finite/unrestricted satisfiability and containment
for non-recursive documents and the finite/unrestricted satisfiability for recursive
SHACL under brave semantics can be captured by ∃SCL. We additionally present
other decision problems from literature, such as shape and constraint satisfiability,
and show how they are also captured by ∃SCL. (Section 5)
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• We pay particular attention to SHACL filters (e.g., constraints on the value of
particular elementary datatypes), which have not been previously addressed in the
literature, and provide a corresponding axiomatisation in MSCL. (Section 6).

• Finally, we turn our focus to SCL (in effect, ∃SCL) to explore the interaction of the
main language features we have identified and create a detailed map of decidability
and complexity results for many interesting fragments, for all aforementioned
problems captured by ∃SCL. In general, satisfiability and containment for the the
full logic are undecidable. However, the base language has an ExpTime-complete
satisfiability and containment problem. (Section 7).

2. Preliminaries

With the term graph we implicitly refer to a set of triples, where each single triple
〈s, p, o〉 identifies an edge with label p, called predicate, from a node s, called subject,
to a node o, called object. Graphs in this article are represented in Turtle syntax [8]
using common XML namespaces, such as sh to refer to SHACL terms. Usually, in the
RDF data model [12], subjects, predicates, and objects are defined over different but
overlapping domains. For example, while IRIs can occupy any position in an RDF triple,
literals (representing datatype values) can only appear in the object position. These
differences are not central to the problem discussed in this article, and thus, for the sake
of simplicity, we will assume that all elements of a triple are drawn from a single and
infinite domain. This assumption actually corresponds to what is known in the literature
as generalised RDF [12]. We model triples as binary relations in FOL, i.e., we write the
atom R(s, o) as a shorthand for the tuple 〈s, R, o〉, and call R a graph relation name. We
use a minus sign to identify the inverse role, i.e., we write R−(s, o) in place of R(o, s). We
also consider the distinguished binary relation name isA to represent class membership
triples, that is, we write 〈s, rdf:type, o〉 as isA(s, o).

3. Shapes Constraint Language: SHACL

In this section we describe the Shapes Constraint Language (SHACL), a W3C language
to define formal constraints for the validation of RDF graphs [26]. Firstly, we introduce
the main elements of its syntax, and explain the role they play in the validation process.
We then discuss assignments [11], that is, mappings that allow us to capture which nodes
in a graph satisfy or violate which constraints. Assignments have been used to formally
define SHACL semantics and this can non-ambiguously happen for the non-recursive case.
For recursive SHACL, the specification leaves the semantics of recursive constraints open
for interpretation, and there have been more than one ways to extend the assignments-
based semantics for this. We review and discuss the four major extended semantics that
have been proposed in the literature to handle recursive constraints. Notably, in the
absence of recursion, we show the collapse of all four extended semantics into the same
one. We also show that two of these extended semantics can be considered a special case
of the other two, by proving a reduction from partial assignment to total assignment
semantics (defined later in this section). Having formalised SHACL semantics, we define
the satisfiability and containment decision problems for SHACL documents.
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3.1. SHACL Syntax

Data validation in SHACL requires two inputs: (1) an RDF graph G to be validated
and (2) a SHACL document M that defines the conditions against which G must be
validated. The SHACL specification defines the output of the data validation process as
a validation report, detailing all the violations of the conditions set by M that were found
in G. If the violation report contains no violations, a graph G is valid w.r.t. a SHACL
document M . Determining whether a graph is valid w.r.t. a SHACL document is the
decision problem called validation.

A SHACL document is a set of shapes. Shapes essentially restrict the structure that
a valid graph should have, by defining a set of constraints that are evaluated against a
set of nodes, known as the target nodes. Formally, a shape is a tuple 〈s, t, d〉 defined by
three components: (1) a shape name s, which uniquely identifies the shape; (2) a target
definition t which is a set of target declarations ; each target declaration can be represented
by a unary query and identifies the RDF nodes that must satisfy the constraints d; (3) a
set of constraints which are used in conjunction, and hence hereafter referred to as the
single constraint d. The SHACL specification defines several types of constraints, called
constraint components. The sh:datatype component, for example, constraints an RDF
term to be an RDF literal of a particular datatype. Without loss of generality, we assume
that shape names in a SHACL document do not occur in other SHACL documents
or graphs. As we formally define later, a graph is valid w.r.t. a document whenever
all constraints of all shapes in the document are satisfied by the target nodes of the
corresponding shapes.

It is worth noting that one type of SHACL target declaration might reference specific
nodes to be validated that do not actually appear in the graph under consideration. Given
a document M and a graph G, we denote by nodes(G,M) the set of nodes in G together
with those referenced by the node target declarations in M . In the absence of a document,
we use nodes(G) to denote the nodes of a graph G. With shapes(M) we refer to all the
shape names in a document M . When it is clear from the context, we might use a shape
name s either to refer to the name itself or to the entire shape tuple.

Constraints can refer to other constraints by using the name of a shape as a short-hand
to refer to its constraints. We call this a shape reference. Let Sd0 be the set of all the shape
names occurring in a constraint d of a shape 〈s, t, d〉; these are the directly-referenced
shapes of s. Let Sdi+1 be the set of shapes in Sdi union the directly-referenced shapes
of the constraints of the shapes in Sdi . A shape 〈s, t, d〉 is recursive if s ∈ Sd∞. A
SHACL document M is said to be recursive if it contains a recursive shape, and non-
recursive otherwise. For simplicity, all SHACL documents we consider in this work do not
contain the sh:xone constraint over shape references, which models the logical operator
of exclusive-or. Any SHACL document, in fact, can be linearly transformed into an
equivalent document that does not contain the sh:xone operator using a standard logical
transformation. The intuition behind this transformation is that an sh:xone defined over
shapes s1 to sn is equivalent to an sh:xone between two shapes sn and sk, where sk is a
fresh shape whose constraint is the sh:xone of shapes s1 to sn−1. Then, any exclusive-or
between two shapes can be linearly transformed into an equivalent expression that uses
only conjunctions, disjunctions, and the negation operators.

5



3.2. Semantics of Non-Recursive SHACL

A target declaration t is a unary query over a graph G. We denote with G |= t(n) that
a node n is in the target of t w.r.t. a graph G. The target declaration t might be empty,
in which case no node is in the target of t. To formally discuss about nodes satisfying the
constraints of a shape we need to introduce the concept of assignments [11]. Intuitively,
an assignment is used to keep track, for any RDF node, of all the shapes whose constraints
the node satisfies and all of those that it does not.

Definition 1. Given a graph G, and a SHACL document M , an assignment σ for
G and M is a function mapping nodes in nodes(G,M), to subsets of shape literals in
shapes(M)∪ {¬s|s ∈ shapes(M)}, such that for all nodes n and shape names s, σ(n) does
not contain both s and ¬s.

Notice that given a document and a graph, an assignment does not have to associate
all graph nodes to all document shapes or their negations. In fact, there might exist
node-shape pairs (n, s) for which neither s ∈ σ(n) nor ¬s ∈ σ(n). This is the reason why
sometimes assignments are called partial assignments, as opposed to total assignments
which have to associate all nodes with all shape names or their negation.

Definition 2. An assignment σ is total w.r.t. a graph G and a SHACL document M if,
for all nodes n in nodes(G,M) and shapes 〈s, t, d〉 in M , either s ∈ σ(n) or ¬s ∈ σ(n).

For any graph G and SHACL document M , we denote with AG,M and AG,MT , respec-
tively, the set of assignments, and the set of total assignments for G and M . Trivially,
AG,MT ⊆ AG,M holds.

When trying to determine whether a node n of a graph G satisfies a constraint d of
a shape, the outcome does not only depend on d, n, and G, but it might also depend,
due to shape references, on whether other nodes satisfy the constraints of other shapes.
This latter fact can be encoded in an assignment σ. The authors of [11], therefore, define
the evaluation or conformance of a node n to a constraint d w.r.t. a graph G under
an assignment σ as JdKn,G,σ. This expression can take one of the three truth values of
Kleene’s logic: True, False, or Undefined. If JdKn,G,σ is True (resp., False) we say that
node n conforms (resp., does not conform) to constraint d w.r.t. G under σ. Note that if
the set of constraints of a shape is empty, then every node trivially conforms to it, that
is, for all nodes n, graphs G and assignments σ, it holds that J∅Kn,G,σ is True.

Intuitively, the evaluation of JdKn,G,σ can be split into two parts: the first verifies
conditions on G, such as the existence of certain triples. The second part examines
other node-shape pairs that d itself is listing for conformance and, instead of triggering
subsequent evaluation, checks whether their conformance is correctly encoded in σ. Since
– in general and for arbitrary SHACL documents that might be recursive – σ is partial,
it might be that JdKn,G,σ is Undefined. Table 1 provides examples of how JdKn,G,σ is
defined for certain salient constraints. For a comprehensive definition of how all SHACL
constraints are evaluated we refer the reader to [11].1

It should be noted that the evaluation of certain constraints to the truth value of
Undefined might not affect the outcome of the graph validation process (see Section 3.3

1Some SHACL constraints are defined in the appendix of the extended version of [11].

6



Description of constraint d SHACL triples for apply-
ing d to shape :s

Definition of JdKn,G,σ

Empty constraint (d = ∅) {} True
Test whether node is an IRI {:s sh:nodeKind sh:isIRI} True if n is an IRI,

or else False
Conformance to shape :s1 {:s sh:node :s1} True if :s1 ∈ σ(n),

False if ¬:s1 ∈ σ(n),
or else Undefined

Existence of an :r-successor {:s sh:path:r,
:s sh:minCount 1}

True if G contains a triple
with n as the subject and
:r as the predicate,
or else False

Conjunction of constraints
d′ and d′′

Union of SHACL triples for
applying d′ and d′′ to :s

Jd′Kn,G,σ ∧ Jd′′Kn,G,σ

Table 1: Example definitions of JdKn,G,σ for selected SHACL constraints d, given a node n, a graph G
and an assignment σ, where :s and :s1 are shape names, d′ and d′′ are SHACL constraints, and :r is an
IRI. The second column shows which triples, in a SHACL shape graph, define that :s has constraint d .

:studentShape a sh:NodeShape ;

sh:targetClass :Student ;

sh:not :disjFacultyShape .

:disjFacultyShape a

sh:PropertyShape ;

sh:path (:hasSupervisor

:hasFaculty);

sh:disjoint :hasFaculty .

:Alex a :Student ;

:hasFaculty :CS ;

:hasSupervisor :Jane .

:Jane :hasFaculty :CS .

σ(:Alex) =

{:studentShape,
¬:disjFacultyShape},
σ(:Jane) = σ(:CS) =

σ(:Student) =

{¬:studentShape,
:disjFacultyShape}.

Figure 1: A SHACL document (left), a graph that validates it (centre), and a faithful assignment for
this graph and document (right).

for an example). Graph validation depends on the existence of an assignment such that
even if it is Undefined for certain nodes, at least is consistent (as defined below) and is
True for all target nodes on the constraints of the shapes that describe these nodes as
targets. Such assignments are known as faithful assignments [11]. Note that, as we show
in Lemma 2, for non-recursive documents there is a unique faithful assignment which is
total and for which Undefined conformance never appears.

Definition 3. For all graphs G and SHACL documents M , an assignment σ is faithful
w.r.t. G and M , denoted by (G, σ) |= M , if the following two conditions hold true for any
shape 〈s, t, d〉 in shapes(M) and node n in nodes(G,M):

(1) s ∈ σ(n) iff JdKn,G,σ is True and ¬s ∈ σ(n) iff JdKn,G,σ is False;

(2) if G |= t(n) then s ∈ σ(n).

Intuitively, condition (1) ensures that the evaluation described by the assignment is
indeed correct; while condition (2) ensures that the assignment agrees with the target
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definitions. The existence of a faithful assignment is a necessary and sufficient condition
for validation of non-recursive SHACL documents [11].

Definition 4. A graph G is valid w.r.t. a non-recursive SHACL document M if there
exists an assignment σ such that (G, σ) |= M .

An example SHACL document is shown in Figure 1. This example captures the
requirement that all students must have at least one supervisor from the same faculty.
The shape with name :studentShape has class :Student as a target, meaning that
all members of this class must satisfy the constraint of the shape. The constraint
definition of :studentShape requires the non-satisfaction of shape :disjFacultyShape,
i.e., a node satisfies :studentShape if it does not satisfy :disjFacultyShape. The
:disjFacultyShape shape states that an entity has no faculty in common with any of
their supervisors. This is expressed using the sh:path term, which defines a property chain
(i.e., a composition of roles :hasSupervisor and :hasFaculty), and the sh:disjoint
term, which defines a constraint over this property chain (i.e., the non-existence of a
node reachable both by this property chain, and directly by the :hasFaculty role). The
sh:path term is used to construct constraints over property chains, but it does not, on
its own, impose their existence. A graph that is valid with respects to these shapes is
provided in Figure 1, along with a faithful assignment for this graph. The graph can be
made invalid by changing the faculty of :Jane in the last triple to a different value.

As we will see later, the existence of a faithful assignment is also a necessary condition
for all other semantics that allow recursion. For those cases, however, we will want to
consider additional assignments where the first property of Definition 3 holds, but not
necessarily the second, i.e., assignments that agree with the constraint definitions, but
not necessarily the target definitions of the shapes. In order to do this, we will remove
the targets from a document and look for faithful assignments against the new document,
since condition (2) of Definition 3 is trivially satisfied for SHACL documents where
all target definitions are empty. Let M\t denote the SHACL document obtained by
substituting all target definitions in SHACL document M with the empty set. Then, the
following lemma is immediate:

Lemma 1. For all graphs G, SHACL documents M and assignments σ, condition (1)
from Definition 3 holds for any shape s in shapes(M) and node n in nodes(G,M) iff
(G, σ) |= M\t.

For non-recursive SHACL documents, the next lemma states that for any graph, there
exists a unique faithful total assignment for M\t and, if there is a faithful assignment for
M , then this must be it.

Lemma 2. For all graphs G and non-recursive SHACL documents M , there exists a
unique assignment ρ in AG,MT such that (G, ρ) |= M\t, and for every assignment σ in
AG,M such that (G, σ) |= M , then σ = ρ.

Proof. If M is non recursive, then there exists a non empty subset M ′ of M that only
contains shapes whose constraints do not use shape references. Intuitively, the constraints
of the shapes in M ′ can be evaluated directly on any graph, independently of any
assignment. Shape references are the only part of the evaluation of a constraint that
depends on the assignment σ, and that could introduce the truth value Undefined under
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three-valued logic [11]. Thus, for all graphs G, assignments σ, nodes n and constraints c
in of a shape in M ′, it holds that the evaluation of JdKn,G,σ (1) does not depend on σ
and (2) has a Boolean truth value. It is easy to see that properties (1) and (2) also hold
for the document M ′′ which contains the shapes of M whose shape references (if any)
only reference shapes in M ′. This reasoning can be extended inductively to prove that
properties (1) and (2) hold for all the shapes of M . Point (1) ensures that there cannot
be more than one assignment such that (G, σ) |= M\t, while point (2) ensures that such
an assignment is total. This assignment σ exists and it can be computed iteratively as
follows. Let σ′ be the assignment for M ′ such that for any shape 〈s, t, d〉 in M ′ and node
n, s ∈ σ′(n), if JdKn,G,∅ is True, and ¬s ∈ σ′(n), otherwise. Then let σ′′ be the assignment
for M ′′ such that for any shape 〈s, t, d〉 in M ′′ and node n, s ∈ σ′′(n), if JdKn,G,σ

′
is True,

and ¬s ∈ σ′′(n), otherwise. This process is repeated until the assignment σ, defined over
all of the shapes of M , is computed. Notice that for all graphs G, SHACL documents
M and assignments σ, fact (G, σ) |= M implies (G, σ) |= M\t. Thus the existence of an
assignment ρ′ different than ρ such that (G, ρ′) |= M , is in contradiction with the fact
that there cannot be more than one assignment that is faithful for G and M\t.

3.3. Semantics of Full SHACL

As mentioned, the semantics of recursive shape definitions in SHACL documents
has been left undefined in the original W3C SHACL specification [26] and this gives
rise to several possible interpretations. In this work, we consider, and extend upon,
previously introduced semantics of SHACL that define how to interpret recursive SHACL
documents. These can be characterised by two dimensions, namely the choice between
(1) partial and total assignments [11] and (2) between brave and cautious validation [4],
which we will subsequently formally introduce. Together, these two dimensions result
in the four extended semantics studied in this article, namely brave-partial, brave-total,
cautious-partial and cautious-total.

Notice that the formulation of the brave and cautious notions originates in the
literature of non-monotonic reasoning and logic programming (see, e.g., [36] and [17],
respectively). We do not consider the less obvious dimension of stable-model semantics [19],
which also relates to non-monotonic reasoning in logic programming [46, 48, 18] and
inductive learning [49]. Our definitions of partial assignments, total assignments, and
brave validation exactly correspond to existing definitions of [11]. For cautious validation,
instead, we adopt a more general definition than the one previously considered in SHACL
literature [4], where it was only studied under stable-model semantics.

The first extended semantics that we consider coincides with Definition 4. That is,
the existence of a faithful assignment can be directly used as a semantics for recursive
documents as well. Nevertheless, in this case the assignment is not necessarily total, as is
in the case of non-recursive documents proven in Lemma 2. To stress this (as well as the
“brave” nature of the semantics discussed later), we call this the brave-partial semantics.

Definition 5. A graph G is valid w.r.t. a SHACL document M under brave-partial
semantics if there exists an assignment σ ∈ AG,M such that (G, σ) |= M .

The other three extended semantics are defined by adding further conditions to the
one just introduced. To motivate those, first consider an example of a recursive document
and of a non-total faithful assignment that evaluates the conformance of some nodes
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against some constraints to Undefined. This happens when recursion makes it impossible
for a node n to either conform or not to conform to a shape s but, at the same time,
validity does not depend on whether n conforms to shape s or not. Consider, for instance,
the following SHACL document, containing the single shape 〈s∗, ∅, d∗〉 defined as follows:

:InconsistentS a sh:NodeShape ;

sh:not :InconsistentS .

This shape is defined as the negation of itself, that is, given a node n, a graph G and
an assignment σ, fact Jd∗Kn,G,σ is True iff ¬s∗ ∈ σ(n), and False iff s∗ ∈ σ(n). It is easy
to see that any assignment that maps a node to either {s∗} or {¬s∗} is not faithful, as
it would violate condition (1) of Definition 3. However, an assignment that maps every
node of a graph to the empty set would be faithful for that graph and document {s∗}.
Intuitively, this means that nodes in the graph cannot conform nor not conform to shape
s∗, but this should not be interpreted as a violation of any constraint, since this shape
does not have any target node to validate. In effect, conformance for all nodes to the
constraint of {s∗} is left as Undefined, but the existence of a faithful assignment makes
any graph valid w.r.t. to {s∗}.

In the W3C SHACL specification, where recursion semantics was left open to inter-
pretation, nodes can either conform to, or not conform to a given shape, and the concept
of an “undefined” level of conformance is arguably alien to the specification. It is natural,
therefore, to consider restricting the evaluation of a constraint to the True and False
values of Boolean logic. This is achieved by restricting assignments to be total.

Definition 6. A graph G is valid w.r.t. a SHACL document M under brave-total
semantics if there exists a total assignment σ ∈ AG,MT such that (G, σ) |= M .

Since total assignments are a more specific type of assignments, if a graph G is valid
w.r.t. a SHACL document M under brave-total semantics, than it is also valid w.r.t.
M under brave-partial semantics. The converse, instead, is only true for non-recursive
SHACL documents. In fact, as we show later on, all extended semantics coincide, for
non-recursive SHACL documents. Note also, that there is no obvious preferable choice
for the semantics of recursive documents. For example, while total assignments can
be seen as a more natural way of interpreting the SHACL specification, they are not
without issues of their own. Going back to our previous example, we can notice that
there cannot exist a total faithful assignment for the SHACL document containing shape
:InconsistentS, for any non-empty graph. This is a trivial consequence of the fact that
no node can conform to, nor not conform to, shape :InconsistentS. In this example,
however, brave-total semantics conflicts with the SHACL specification, since the latter
implies that a SHACL document without target declarations in any of its shapes (such
as the one in our example) should trivially validate any graph. If there are no target
declarations, in fact, there are no target nodes on which to verify the conformance of
certain shapes, and thus no violations of constraints should be detected.

Another dimension in the choices for extended semantics studied in literature [4]
is the difference between brave and cautious validation of recursive documents. When
a SHACL document M is recursive, there might exist multiple assignments satisfying
property (1) of Definition 3, that is, multiple σ for which (G, σ) |= M\t. Intuitively, these
can be seen as equally “correct” assignments with respect to the constraints of the shapes,
and brave validation only checks whether at least one of them is compatible with the
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target definitions of the shapes. Cautious validation, instead, represents a stronger form
of validation, where all such assignments must be compatible with the target definitions.

Definition 7. A graph G is valid w.r.t. a SHACL document M under cautious-partial
(resp., cautious-total) semantics if it is (1) valid under brave-partial (resp., brave-

total) semantics and (2) for all assignments σ in AG,M (resp., AG,MT ), it is true that if
(G, σ) |= M\t holds then (G, σ) |= M holds as well.

To exemplify this distinction, consider the following SHACL document M1.

:VegDishShape a sh:PropertyShape ;

sh:targetNode :DailySpecial ;

sh:path :hasIngredient ;

sh:minCount 1 ;

sh:qualifiedMaxCount 0 ;

sh:qualifiedValueShape [ sh: not :VegIngredientShape ] .

:VegIngredientShape a sh:PropertyShape ;

sh:path [ sh:inversePath :hasIngredient ] ;

sh:node :VegDishShape .

This document requires the daily special of a restaurant, node :DailySpecial, to be
vegetarian, that is, to conform to shape :VegDishShape. This shape is recursively defined
as follows. Something is a vegetarian dish if it contains an ingredient, and all of its
ingredients are vegetarian, that is, entities conforming to the :VegIngredientShape. A
vegetarian ingredient, in turn, is an ingredient of at least one vegetarian dish. Consider
now a graph G1 containing only the following triple.

:DailySpecial :hasIngredient :Chicken .

Due to the recursive definition of :VegDishShape, there exist two different assignments σ1

and σ2, which are both faithful for G1 and M
\t
1 . In σ1, no node in G1 conforms to any

shape, while σ2 differs from σ1 in that node :DailySpecial conforms to :VegDishShape
and node :Chicken conforms to :VegIngredientShape. Essentially, either both the dish
and the ingredient from graph G1 are vegetarian, or neither is. Therefore, σ2 is faithful for
G1 and M1, while σ1 is not. The question of whether the daily special is a vegetarian dish
or not can be approached with different levels of “caution”. Under brave validation, graph
G1 is valid w.r.t. M1, since it is possible that the daily special is vegetarian. Cautious
validation, instead, takes the more conservative approach, and under its definition G1 is
not valid w.r.t. by M1, since it is also possible that the daily special is not vegetarian.

For each extended semantics, the definition of validity of a graph G w.r.t. a SHACL
document M , denoted by G |= M , is summarised in the following list, and schematised
in Table 2.

brave-partial there is an assignment that is faithful w.r.t. G and M ;

brave-total there is an assignment that is total and faithful w.r.t. G and M ;

cautious-partial there is an assignment that is faithful w.r.t. G and M , and every
assignment that is faithful w.r.t. G and M\t is also faithful w.r.t. G and M .

cautious-total there is an assignment that is total and faithful w.r.t. G and M , and
every assignment that is total and faithful w.r.t. G and M\t is also faithful w.r.t.
G and M .
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Brave Cautious

Partial ∃σ. (G, σ) |= M
∃σ. (G, σ) |= M and
∀σ. if (G, σ) |= M\t,

then (G, σ) |= M

Total ∃ ρ. (G, ρ) |= M
∃ ρ. (G, ρ) |= M and
∀ ρ. if (G, ρ) |= M\t,

then (G, ρ) |= M

Table 2: Definition of validity (from Definitions 5, 6 and 7) of a graph G under a SHACL document M
(G |= M) w.r.t. the two dimensions of extended semantics considered in this article, where σ ∈ AG,M

and ρ ∈ AG,MT .

We now prove that, when considering only non-recursive SHACL documents, these
four semantics are necessarily equivalent to each other, since the semantics of non-recursive
SHACL documents is uniquely determined. The formalisation of this equivalence given
in the next theorem is essentially a consequence of Lemma 2.

Theorem 1. For any graph G, non-recursive SHACL document M , and extended
semantics α and β, it holds that G |=M under α iff G |=M under β.

Proof. Since AG,MT ⊆ AG,M , for any graph G and SHACL document M , the definition
of validity of cautious-total trivially subsumes the one of brave-total and cautious-partial
which, in turn, subsumes the one of brave-partial. Notice that for all graphs G, SHACL

documents M and assignments σ, if σ ∈ AG,M
\t

T , then σ ∈ AG,MT . From Lemma 2 we
also know that a faithful assignment for M and G is necessarily total, and it is the same
unique assignment that is faithful for M\t and G. Thus, for non-recursive documents, the
definition of validity of brave-partial subsumes the one of cautious-total, and consequently
the four extended semantics are equivalent.

An expert reader might observe that the above theorem resembles a similar result in
the literature of logic programming for query answering under stratified programs [44],
where the existence of a unique perfect model forces the collapse of the two notions of
brave and cautious answers.

Given any notion of validity from Table 2, corresponding to one of the four extended
semantics, we can define the following decision problems, which we study in detail in the
remaining part of the article.

• SHACL Satisfiability: A SHACL document M is satisfiable iff there exists a
graph G such that G |= M .

• SHACL Containment: For all SHACL documents M1, M2, we say that M1 is
contained in M2, denoted M1 ⊆M2, iff for all graphs G, if G |= M1 then G |= M2.

Obviously, the more meaningful satisfiability problem is one on finite graphs.

• SHACL Finite Model Property: A SHACL document M enjoys the finite
model property if whenever it is satisfiable it is so on a finite graph.

12



3.4. From Partial to Total Assignments

In the remainder of the paper we simplify our study of SHACL by only considering
recursive semantics based on total assignments. We focus on this type of assignments
because, as we see later, partial assignment semantics can be seen as a special case of
total. By showing positive results for extended semantics based on total assignments,
we are therefore also showing the same results for the corresponding semantics based on
partial assignments. It should be noted, however, that this does not hold for negative
results. This means that the decidability results that we show in Section 7 apply to both
total and partial assignments, but undecidability, instead, does not carry on to partial
assignments; this remains an open question.

We prove a reduction from partial to total assignments by showing that any SHACL
document M can be linearly transformed into another document M∗ such that a graph
G is valid w.r.t. M under brave-partial, or cautious-partial, iff G is valid w.r.t. M∗ under
brave-total or cautious-total, respectively. Intuitively, this is achieved by splitting each
shape s into two shapes s+ and s−, evaluated under total assignments semantics, such
that the constraints of s+ and s− model the evaluation to True and False, respectively,
of the constraints of s, and such that the evaluation to Undefined of the constraints of s
correspond to the negation of the constraints of both s+ and s−.

Note that the aforementioned reduction has strong similarities with the notion of
completion for programs with stratified negation in logic programming [37] (see, also [35]
and [50]).

In the following, we formalise the just discussed transformation by means of a function
Γ over SHACL documents. With a slight abuse of notation, we use ¬ and ∧ to denote,
respectively, the negated form of a SHACL constraint, and the conjunction of two
SHACL constraints. We also denote s(x) the constraint requiring node x to conform
to shape s. We use s+ and s− to denote two unique fresh shape names, which are a
function of s.

Definition 8. Given a SHACL document M , document Γ(M) contains shapes 〈s+, t,
γ(d)〉 and 〈s−, t, γ(¬d)〉 for every shape 〈s, t, d〉 in M , such that, for every constraint d,
the corresponding constraint γ(d) is constructed by replacing, for every shape s, every
occurrence of the negated atom “¬s(x)” in d with “¬s+(x)∧ s−(x)” and every occurrence
of the non-negated atom “s(x)” in d with “s+(x) ∧ ¬s−(x)”.

Definition 9. Given an assignment σ, let σγ be the assignment such that for every
node n the following holds: σγ(n) = {s+,¬s−|s ∈ σ(n)} ∪ {¬s+, s−|¬s ∈ σ(n)} ∪
{¬s+,¬s−|s,¬s 6∈ σ(n)}.

We can observe that for any SHACL document M , graph G and assignment σ for M
and G, assignment σγ is a total assignment for Γ(M) and G. Also, it is easy to see that
the complexity of the transformation Γ(M) is linear in the size of the original document
M .

Lemma 3. Given a SHACL document M , a graph G, an assignment σ, and a node n,
the following hold:

• JdKn,G,σ is True iff Jγ(d)Kn,G,σ
γ

is True;

• JdKn,G,σ is False iff Jγ(¬d)Kn,G,σ
γ

is True;
13



• JdKn,G,σ is Undefined iff both Jγ(d)Kn,G,σ
γ

and Jγ(¬d)Kn,G,σ
γ

are False.

Proof. Negation in SHACL is defined in the standard way, and therefore JdKn,G,σ is
True iff J¬dKn,G,σ is False. Since JdKn,G,σ is False iff J¬dKn,G,σ is True, proof of the first
statement of the lemma is also proof of the second. We can also notice that the third
statement of the lemma necessarily follows from the first two. Thus the entire lemma
can be proved by proving just the first statement. To prove the first item, we show the
following two implications, separately:

(⇒): if JdKn,G,σ is True, then Jγ(d)Kn,G,σ
γ

is True;

(⇐): if Jγ(d)Kn,G,σ
γ

is True, then JdKn,G,σ is True.

In Kleene’s 3-valued logic, the evaluation of a sentence into True or False implies
that this evaluation does not depend on any of its sub-sentences that are evaluated to
Undefined (i.e., changing the truth value of one such sub-sentence would not affect the
truth value of the whole sentence). Notice also that the only atoms that can be evaluated
as Undefined are shape references s(x) [11]. This means that if the 3-valued evaluation of
a constraint d over a node, a graph and an assignment is True (resp., False), then this
evaluation would still be True (resp., False), if every shape atom s(x) that evaluates to
Undefined evaluates to False instead.

(⇒) If JdKn,G,σ evaluates to True, then Jγ(d)Kn,G,σ
γ

must also evaluate to True, since
in the transformation from d to γ(d) (1) every constraint that is not a shape reference
remains unchanged, and (2) every shape reference (in d) is transformed into a conjunction
of shape references (in γ(d)) that still evaluates to the same truth value of the original
expression, unless this truth value is Undefined. However, by our previous observation,
changing an Undefined truth value cannot affect the truth value of Jγ(d)Kn,G,σ

γ

since
JdKn,G,σ evaluates to True. Thus implication (⇒) holds.

(⇐) Similarly, if Jγ(d)Kn,G,σ
γ

evaluates to True, then JdKn,G,σ must also evaluate
to True, since, in the inverse transformation from γ(d) to d: (1) every constraint that
is not a shape reference remains unchanged, and (2) every pair of shape references
“s+(x)∧¬s−(x)” or “¬s+(x)∧ s−(x)” is transformed into a single shape reference which
either (a) evaluates to the same truth value, or (b) evaluates to the truth value of
Undefined when the original constraint evaluates to False. Notice that in SHACL, the
constraints of a shape are considered in conjunction, and negation only appears in front
of shape references. Since Jγ(d)Kn,G,σ

γ

evaluates to True, a pair of shape references
“s+(x)∧¬s−(x)” or “¬s+(x)∧s−(x)” that evaluates to False w.r.t. n, G and σγ can only
appear in a disjunction in γ(d) of which at least one disjunct evaluates to True w.r.t. n,
G and σγ , since this disjunction cannot be within the scope of negation. Pairs of shape
references “s+(x) ∧ ¬s−(x)” or “¬s+(x) ∧ s−(x)” that evaluate to False w.r.t. n, G and
σγ , therefore, do not affect the truth value of Jγ(d)Kn,G,σ

γ

. Thus implication (⇐) holds
as well.

From Definition 8 and Lemma 3 the main theorem of this subsection easily follows.

Theorem 2. Given a SHACL document M and a graph G, it holds that G is valid w.r.t.
M under brave-partial (resp., cautious-partial) semantics iff G is valid w.r.t. Γ(M) under
brave-total (resp., cautious-total) semantics.
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Types of target declarations in t SCL target axiom

Node target (node c) Σs(c)

Class target (class c) ∀x. isA(x, c)→ Σs(x)

Subjects-of target (relation R) ∀x, y.R(x, y)→ Σs(x)

Objects-of target (relation R) ∀x, y.R−(x, y)→ Σs(x)

Table 3: Translation of a SHACL shape with name s and target declaration t, into an SCL target axiom.

Thus, in the rest of the article we will only focus on total assignments and we shall
use the term brave semantics to refer to brave-total and cautious semantics to refer to
cautious-total.

4. Shapes Constraint Logic: SCL

In this section we provide a precise formalisation of SHACL semantics and related
decision problems in a formal logical system. For the sake of simplicity of presentation,
we first focus on the brave semantics only, and then show how to adapt our system
to model cautious semantics (recall that, as shown in Section 3.4, partial assignments
semantics is, model-theoretically, a special case of total assignments semantics). The main
component of this logical system is the SCL language, a novel fragment of first-order
logic extended with counting quantifiers and the transitive closure operator, that precisely
models SHACL documents. We will later show the equivalidity of SHACL and SCL,
by demonstrating how, for any graph, the latter can be used to model total faithful
assignments.

Our decision problems, instead, are modelled using MSCL, a fragment of monadic
second-order logic defined on top of SCL, by extending the latter with second-order
quantifications on monadic relations. Intuitively, MSCL allows us to define conditions
over the space of all possible assignments, something that cannot be expressed in SCL.
Nevertheless, as we will see later, several formulations of our decision problems are fully
reducible to the first-order logic satisfiability problem.

4.1. A First-Order Logic for SHACL

In the presentation of our logical system and in the analysis of its decision problems, we
consider arbitrary first-order relational models with equality as the only built-in relation.
When we deal with the SHACL encoding, instead, we assume the first-order models to
have the set of RDF terms as the domain of discourse, plus a set of interpreted relations
for the SHACL filters.

Assignments are modelled by means of a set of monadic relation names Σ, called shape
relations. In particular, each shape s is associated with a unique shape relation Σs. If
Σs is a shape relation associated with shape s, then fact Σs(x) (resp. ¬Σs(x)) describes
an assignment σ such that s ∈ σ(x) (resp. ¬s ∈ σ(x)). Since our logical system uses
standard Boolean logic, for any element of the domain c and shape relation Σ, it holds
that Σ(c) ∨ ¬Σ(c) holds, by the law of excluded middle. Thus any Boolean interpretation
of shape relations defines a total assignment.

Sentences and formulae in the SCL language follow the grammar reported in Defi-
nition 10, whose main syntactic components are described later on. In the rest of the
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article, we will focus on this logic to study the decidability and complexity of our SHACL
decision problems. In particular, we are going to reserve the symbols τ and τ− to denote
the translations from SHACL documents into SCL sentences and vice versa and refer
the reader to the appendix for the full details about these translations. Bold capital
letters in square brackets on the right of some of the grammar production rules are pure
meta-annotations for naming SCL features and, obviously, not an integral part of the
syntax.

Definition 10. The Shape Constraint Logic (SCL, for short) is the set of first-order
sentences ϕ built according to the following context-free grammar, where c is a constant
from the domain of RDF terms, Σ is a shape-relation name, F is a filter-relation name,
R is a binary-relation name, Kleene’s star symbol ? indicates the transitive closure of the
binary relation induced by π(x, y), the superscript ± stands for a relation or its inverse,
and n ∈ N:

ϕ := > | ϕ ∧ ϕ
| Σ(c) | ∀x. isA(x, c)→ Σ(x) | ∀x, y.R±(x, y)→ Σ(x)

| ∀x.Σ(x)↔ ψ(x);

ψ(x) := > | ¬ψ(x) | ψ(x) ∧ ψ(x) | x = c | F(x) | Σ(x) | ∃y. π(x, y) ∧ ψ(y) [∅]

| ¬∃y. π(x, y) ∧ R(x, y) [D]

| ∀y. π(x, y)↔ R(x, y) [E]

| ∀y, z. π(x, y) ∧ R(x, z)→ ς(y, z) [O]

| ∃≥ny. π(x, y) ∧ ψ(y); [C]

π(x, y) := R±(x, y)

| ∃z. π(x, z) ∧ π(z, y) [S]

| x = y ∨ π(x, y) [Z]

| π(x, y) ∨ π(x, y) [A]

| (π(x, y))?; [T]

ς(x, y) := x <± y | x ≤± y.

Intuitively, sentences obtained through grammar rule ϕ correspond to SHACL docu-
ments. These could be empty (>), a conjunction of documents, a target axiom (production
rules 3, 4, and 5 of rule ϕ) or a constraint axiom (production rule 6 of rule ϕ). Target
axioms take one of three forms, based on the type of target declarations in the shapes
of a SHACL document. There are four types of target declarations in SHACL, namely
(1) a particular constant c (node target), (2) instances of class c (class target), or (3) -
(4) subjects/objects of a triple with predicate R (subject-of/object-of target). The full
correspondence of SHACL target declarations to SCL target axioms is summarised in
Table 3. The correspondence of a target definition containing multiple target declarations,
is simply the conjunction of the corresponding target axioms.

The non terminal symbol ψ(x) corresponds to the subgrammar of the SHACL con-
straints components. Within this subgrammar, the true symbol > identifies an empty
constraint, x = c a constant equivalence constraint and F a monadic filter relation (e.g.,
FIRI(x), true iff x is an IRI). By filters we refer to the SHACL constraints about ordering,
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node-type, datatype, language tag, regular expressions, and string length [26]. Filters are
captured by the F(x) production rule and the O component. The C component captures
qualified value shape cardinality constraints. The E, D and O components capture the
equality, disjointedness and order property pair components.

The π(x, y) subgrammar models SHACL property paths. Within this subgrammar
S denotes sequence paths, A denotes alternate paths, Z denotes a zero-or-one path, and,
finally, T denotes a zero-or-more path.

As usual, to enhance readability, we define the following syntactic shortcuts:

• ψ1(x) ∨ ψ2(x) :=¬(¬ψ1(x) ∧ ¬ψ2(x));

• π(x, c) :=∃y.π(x, y) ∧ y = c;

• ∀y . π(x, y)→ ψ(y) :=¬∃y . π(x, y) ∧ ¬ψ(y).

The above mentioned translations τ and τ− between SHACL and SCL are polynomial
in the size of the input and computable in polynomial time. Intuitively, as we show later
in Theorem 3, a SHACL document M validates a graph G iff a first-order structure
representing the latter satisfies the SCL sentence τ(M). Vice versa, every SCL sentence
ϕ is satisfied by a first-order structure representing graph G iff the SHACL document
τ−(ϕ) validates G.

Another important property of these translations is that they preserve the notion of
SHACL recursion, that is, a SHACL document M is recursive iff the SHACL document
τ−(τ(M)) is recursive. We will call an SCL sentence φ recursive if τ−(φ) is recursive.

Given a SHACL document M , the SCL sentence τ(M) contains a shape relation Σs

for each shape s in M . Sentence τ(M) can be split into constraint axioms and target
axioms. Intuitively, these are used to verify the first and second condition of Definition 3,
respectively. The constraint axioms of τ(M) correspond to the sentence τ(M\t), i.e.,
to the translation of the document ignoring targets, while the target axioms of τ(M)
correspond to taking targets into account, i.e., to a sentence φ, where φ∧ τ(M\t) is τ(M).

Note that our translation τ results in a particular structure of SCL sentences, that we
will call well-formed, and thus we restrict the inverse translation τ− and define it only on
well-formed SCL sentences. An SCL sentence ϕ is well-formed if, for every shape relation
Σ, sentence ϕ contains exactly one constraint axiom with relation Σ on the left-hand side
of the implication. Intuitively, this condition ensures that every shape relation is “defined”
by a corresponding constraint axiom. Figure 2 shows the translation of the document
from Figure 1 into a well-formed SCL sentence.

Before defining the semantic correspondence between SHACL and SCL we introduce
the translations of graphs and assignments into first-order structures.

Definition 11. Given a graph G, the first-order structure Gτ contains a fact R(s, o),
i.e., R(s, o) holds true in Gτ , if 〈s, R, o〉 ∈ G.

Definition 12. Given a total assignment σ, the first-order structure στ contains fact
Σs(n), i.e., Σs(n) holds true in στ , for every node n, if s ∈ σ(n).

Definition 13. Given a graph G and a total assignment σ, the first-order structure I
induced by G and σ is the disjoint union of structures Gτ and στ . Given a first-order
structure I: (1) the graph G induced by I is the graph that contains triple 〈s, R, o〉 if

17



(
∀x. isA(x, :Student)→ Σ:studentShape(x)

)
∧
(
∀x. Σ:studentShape(x)↔ ¬Σ:disjFacultyShape(x)

)
∧
(
∀x. Σ:disjFacultyShape(x)↔

¬∃y. ( ∃z. R:hasSupervisor(x, z) ∧
R:hasFaculty(z, y) ∧

R:hasFaculty(x, y)
) )

Figure 2: Translation of the SHACL document from Figure 1 into an SCL sentence.

I |= R(s, o) and (2) the assignment σ induced by I is the assignment such that, for all
elements of the domain n and shape relations Σs, fact s ∈ σ(n) is true if I |= Σs(n) and
¬s ∈ σ(n) is true if I 6|= Σs(n).

The semantic correspondence between SHACL and SCL is captured by the following
theorem.

Theorem 3. For all graphs G, total assignments σ and SHACL documents M , it is true
that (G, σ) |= M iff I |= τ(M), where I is the first-order structure induced by G and σ.
For any first-order structure I and SCL sentence φ, it is true I |= φ iff (G, σ) |= τ−(φ),
where G and σ are, respectively, the graph and assignment induced by I.

This theorem can be proved by a tedious but straightforward structural induction
over the document syntax, with an operator-by-operator analysis of the translation we
provide in the appendix.

Sentences in SCL have a direct correspondence to the sentences of the grammar
presented in [40]. For each non-recursive SHACL document, the differences between
the sentences obtained by translating this document are purely syntactic and the two
sentences are equisatisfiable. In particular, the binary relation hasShape of [40] is now
represented instead as a set of monadic relations. For recursive SHACL documents, the
grammar of Definition 10 introduces a one-to-one correspondence between SHACL target
declarations/constraints, and target/constraint axioms respectively.

The sub-grammar ψ(x) in Definition 10 corresponds to the grammar of SHACL
constraints from [11], with the addition of filters. The grammar from [11] omits filters
by assuming that their evaluation is not more computationally complex than evaluating
equality. This assumption is true for validation, the main decision problem addressed
in [11], but it does not hold for satisfiability and containment, as we further discuss in
Section 6.

To distinguish different fragments of SCL, Table 4 lists a number of prominent
SHACL components. The language defined without any of these constructs is our base
language, denoted ∅. When using an abbreviation of a prominent feature, we refer to the
fragment of our logic that includes the base language together with that feature enabled.
For example, S A identifies the fragment that only allows the base language, sequence
paths, and alternate paths.
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Abbr. Name SHACL component SCL expression

D Property pair disjointness sh:disjoint ¬∃y. π(x, y) ∧ R(x, y)

E Property pair equality sh:equals ∀y. π(x, y)↔ R(x, y)

O Property pair order
sh:lessThan
sh:lessThanOrEquals

x <± y and x ≤± y

C Cardinality constraints
sh:qualifiedValueShape
sh:qualifiedMinCount
sh:qualifiedMaxCount

∃≥ny. π(x, y) ∧ ψ(y)
with n 6= 1

S Sequence paths SHACL list ∃z. π(x, z) ∧ π(z, y)

Z Zero-or-one paths sh:zeroOrOnePath x = y ∨ π(x, y)

A Alternative paths sh:alternativePath π(x, y) ∨ π(x, y)

T Transitive paths
sh:zeroOrMorePath
sh:oneOrMorePath

(π(x, y))?

Table 4: Correspondence between prominent SHACL components and SCL expressions.

The SHACL specification presents an unusual asymmetry in the fact that equality,
disjointedness and order components (corresponding to E, D, and O in SCL) force one
of their two path expressions to be an atomic relation. This can result in situations
where order constraints can be defined in just one direction, since only the less-than
and less-than-or-equal property pair constraints are defined in SHACL. Our O fragment
models a more natural order comparison that includes the > and ≥ components, by using
the inverse of < and ≤. We instead denote by O’ the fragment where the order relations
in the ς(x, y) subgrammar cannot be inverted. In our formal analysis of Section 7 we will
consider both O and O’.

4.2. A Second-Order Logic for SHACL Decision Problems

In order to model SHACL decision problems, we introduce the Monadic Shape
Constraint Logic (MSCL, for short) built on top of a second-order interpretation of
SCL sentences. A second-order interpretation of an SCL sentence φ is the second-order
formula obtained by interpreting shape relations as free monadic second order variables.
Obviously, shape relations that are under the scope of the same quantifier describe
the same assignment. While SCL can be used to describe the faithfulness of a single
assignment, MSCL can express properties that must be true for all possible assignments.
This is necessary to model all extended semantics. As usual, disjunction and implication
symbols in MSCL sentences are just syntactic shortcuts.

Definition 14. The Monadic Shape Constraint Logic (MSCL, for short) is the set of
second-order sentences built according to the following context-free grammar Φ, where ϕ
is an SCL sentence and Σ is the second-order variable corresponding to a shape relation.

Φ := ϕ | ¬Φ | Φ ∧ Φ | ∃Σ.Φ | ∀Σ.Φ; ϕ := SCL.

The ∃SCL (resp., ∀SCL) fragment of MSCL is the set of sentences obtained by the above
grammar deprived of the negation and universal (resp., existential) quantifier rules.

Relying on the standard semantics for second-order logic, we define the satisfiability
and containment for MSCL sentences, as well as the closely related finite-model property,
in the natural way.
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MSCL Sentence Satisfiability An MSCL sentence Φ is satisfiable if there exists a
relational structure Ω such that Ω |= Φ.

MSCL Finite-model Property An MSCL sentence Φ enjoys the finite-model property
if, whenever Φ is satisfiable, it is so on a relational structure.

In Section 5 we discuss the correspondence between the SHACL and MSCL decision
problems. In this respect, we assume that filters are interpreted relations. In particular,
we prove equivalence of SHACL and MSCL, for the purpose of validity, on models that
we call canonical ; that is, models having the following properties: (1) the domain of the
model is the set of RDF terms, (2) constant symbols are interpreted as themselves (as in
a standard Herbrand model [16]), (3) such a model contains built-in interpreted relations
for filters, and (4) ordering relations < and ≤ are the disjoint union of the total orders
of the different comparison types allowed in SPARQL. To enforce the fact that different
RDF terms are not equivalent to each other we adopt the unique name assumption for
the constants of our language. For the purpose of our decision problems, it is sufficient to
axiomatise the inequality of all the known constants.

Finally, we state a trivial result used later on to show how to solve some of the
mentioned decision problem by looking at the “simpler” SCL satisfiability and validity
decision problems.2

Proposition 1. An ∃SCL (resp., ∀SCL) sentence Φ,∃Σ1 . . . ∃Σm. ϕ (resp., Φ, ∀Σ1 . . .
∀Σm. ϕ) is satisfiable (resp., valid) iff the subformula ϕ interpreted as an SCL sentence
is satisfiable (resp., valid).

5. From SHACL Decision Problems to MSCL Satisfiability

The rich expressiveness of the MSCL language, defined in the previous section, allows
us to formally define several decision problems. We first use this language to define the
main such problems studied in this article, namely SHACL validation, satisfiability and
containment. We then show how MSCL can also capture a number of related decision
problems that have been proposed in the literature.

5.1. Principal Decision Problems

In this section we describe the equivalidity of MSCL and SHACL, and provide a
reduction of our decision problems into MSCL satisfiability. Notably, we also show how
some of them can be further reduced into ∃SCL. As we will see later, this last reduction
can be easily translated to a reduction into first-order logic, from which we derive several
decidability results.

We again focus only on total assignment semantics. Given a second-order formula φ,
second-order interpretation of an SCL sentence, we denote with ∃(φ), respectively ∀(φ),
the MSCL sentence obtained by existentially, respectively universally, quantifying all of
the shape relations of φ. Recall that, by construction, the assignments induced by models

2The term valid here refers to the notion of validity in mathematical logic and model theory, not to
be confused with SHACL validation.
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of an MSCL sentence are total, and that the second-order variables under the scope of
the same quantifier represent a single assignment.

The following corollaries, which rely on the standard notion of modelling of a sentence
by a structure, easily follow from Theorem 3 and the definitions of validity from Table
2. The first two corollaries define the correspondence between SHACL and MSCL
validation. The last four corollaries express our formalisation of the SHACL satisfiability
and containment decision problems in the case of brave validation and in the case of
cautious validation. Recall also that Gτ denotes the first-order structure induced by
a graph G, and M\t denotes the SHACL document obtained by removing all target
declarations from SHACL document M , which we use to test first condition of Def. 3 in
isolation from the second.

Corollary 1 (Brave-Total Validation). A graph G is valid w.r.t. a SHACL document
M under brave-total semantics if Gτ |= ∃(τ(M)).

Corollary 2 (Cautious-Total Validation). A graph G is valid w.r.t. a SHACL document
M under cautious-total semantics if Gτ |= ∃(τ(M)) ∧ ∀(τ(M\t)→ τ(M)).

Corollary 3 (Brave-Total Satisfiability). For any SHACL document M , document M
is (finitely) satisfiable under brave-total semantics if ∃(τ(M)) is (finitely) satisfiable.

Corollary 4 (Cautious-Total Satisfiability). For any SHACL document M , document
M is (finitely) satisfiable under cautious-total semantics if ∃(τ(M))∧ ∀(τ(M\t)→ τ(M))
is (finitely) satisfiable.

Corollary 5 (Brave-Total Containment). For any pair of SHACL documents M1 and M2,
document M1 is contained in M2 under brave-total semantics iff ∃(τ(M1))→ ∃(τ(M2))
is valid, that is, iff ∃(τ(M1)) ∧ ¬∃(τ(M2)) is unsatisfiable.

Corollary 6 (Cautious-Total Containment). For any pair of SHACL documents M1

and M2, document M1 is contained in M2 under cautious-total semantics if(
∃(τ(M1)) ∧ ∀(τ(M

\t
1 )→ τ(M1))

)
→
(
∃(τ(M2)) ∧ ∀(τ(M

\t
2 )→ τ(M2))

)
is valid, that is, iff(
∃(τ(M1)) ∧ ∀(τ(M

\t
1 )→ τ(M1))

)
∧ ¬

(
∃(τ(M2)) ∧ ∀(τ(M

\t
2 )→ τ(M2))

)
is unsatisfiable.

We now provide a simplified definition of containment for non-recursive SHACL
documents by exploiting the properties of Lemma 2, and the fact that all extended
semantics are equivalent for non-recursive SHACL.

Lemma 4. For any pair of non-recursive SHACL documents M1 and M2 document M1

is contained in M2 iff ∃(τ(M1)) ∧ ∃(τ(M
\t
2 ) ∧ ¬τ(M2)) is not satisfiable.

Proof. For non-recursive SHACL documents all semantics are equivalent, thus contain-
ment of two non-recursvie SHACL documents can be expressed as containment under
brave-total semantics (Corollary 5), namely the unsatisfiability of ∃(τ(M1)) ∧ ∀(¬τ(M2)).
Notice that for all assignment σ and graphs G, if (G, σ) 6|= M\t then trivially (G, σ) 6|= M ,
thus we can rewrite containment as the unsatisfiability of the following sentence:

∃(τ(M1)) ∧ ∀(¬τ(M
\t
2 ) ∨ ¬τ(M2)),
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which is trivially equivalent to the following:

∃(τ(M1)) ∧ ∀(τ(M
\t
2 )→ ¬τ(M2)) is unsatisfiable.

From Lemma 2 we know that, for any graph G, there exists an assignment σ such that

(G, σ) |= M\t. By Theorem 3, the structure Gτ induced by any G models ∃(τ(M
\t
2 )), and

thus ∃(τ(M
\t
2 )) is true for any model. We can therefore rewrite the containment criterion

as the unsatisfiability of the following sentence:

∃(τ(M1)) ∧ ∃(τ(M
\t
2 )) ∧ ∀(τ(M

\t
2 )→ ¬τ(M2)),

which is trivially equivalent to:

∃(τ(M1)) ∧ ∃(τ(M
\t
2 ) ∧ ¬τ(M2)) ∧ ∀(τ(M

\t
2 )→ ¬τ(M2)).

From Lemma 2 we also know that there is only one assignment σ such that (G, σ) |=
M\t, thus the conjunct in the for all quantification can be removed.

From the above results we can notice that several decision problems are reducible to
the satisfiability of ∃SCL sentences, which, as defined in Proposition 1, can be further
reduced to the satisfiability of SCL. In Section 7 we will study the properties of SCL to
provide decidability and complexity results for our decision problems that can be reduced
to ∃SCL satisfiability, namely the satisfiability and containment of non-recursive SHACL
documents, and satisfiability of (recursive) SHACL documents under brave-total (and
thus also brave-partial) semantics. The remaining decision problems, namely containment
for recursive SHACL documents (under any extended semantics), and satisfiability for
recursive SHACL documents under cautious validation, require the expressiveness of
second-order logic, and are likely undecidable even for very restrictive fragments of
SHACL.

It is important to notice that the undecidability results of Section 7 only consider
the arbitrary unrestricted (non-finite) satisfiability problem. It is not immediately
clear whether these can be extended to the finite problem too, but we conjecture that
a Trakhtenbrot-like undecidability proof [55, 33] can be used for the SCL fragments
containing at least the O construct.

5.2. Additional Decision Problems

Our logical framework allows us to express a number of additional decision problems
that shift the focus on more fine-grained objects, such as shapes and constraints. While
these additional decision problems are not the focus of this article, we discuss them for
the sake of completeness. To better model these additional problems, we will use tn to
denote a constraint definition that targets the single node n.

Given a SHACL document M , and two shapes s and s′ in M , the decision problem
of shape containment [29] determines whether s is contained in s′. Intuitively, this means
that whenever M is used for validation, nodes conforming to s necessarily conform to
s′. The definition of shape containment, adapted to the notation of our article, is the
following.

Definition 15. Given a SHACL document M , and two shapes 〈s, t, d〉 and 〈s′, t′, d′〉 in
M , s is shape contained in s′ under brave-partial (resp. brave-total) semantics if, for

all graphs G, nodes n in nodes(G, ∅) and assignments σ in AG,M (resp. AG,MT ) such that
(G, σ) |= M , if s ∈ σ(n) then s′ ∈ σ(n).
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While the original definition only considered brave-total semantics, our formulation is
more general, as it also includes brave-partial. It is important to notice that, if a SHACL
document is unsatisfiable, any pair of shapes within that document trivially contain each
other. In other words, the containment of a shape into another is not necessarily caused
by any particular property of those shapes.

We should also note that the fragment studied in [29] for which shape containment is
decidable is the SHACL fragment corresponding to the SCL sub-fragment of C (the base
language plus counting quantifiers) where filters are not allowed. This is in agreement
with our decidability results, that we present in Sec. 7, where we demonstrate decidability
of the similar SHACL satisfiability problem for even more general fragments of C.

The shape containment problem can be expressed as the existence of a node n such
that document M ∪ {〈s∗, tn, d∗〉} is unsatisfiable under brave-partial (resp. brave-total)
semantics, where s∗ is a fresh shape name, tn is a target declaration that targets only
node n, and d∗ is the constraint obtained by conjuncting d′ and the negation of d.

Theorem 4. Given a SHACL document M , and two shapes 〈s, t, d〉 and 〈s′, t′, d′〉 in M ,
s is not shape contained in s′ under brave-partial (resp. brave-total) semantics iff there
exist a node n such that document M ∪{〈s∗, tn, d∗〉} is satisfiable under brave-partial (resp.
brave-total) semantics, where s∗ is a fresh shape name, tn is a target declaration that
targets only node n, and d∗ is the constraint obtained by conjuncting d and the negation
of d′.

Proof. Given a node n let M ′ = M ∪ {〈s∗, tn, d∗〉}.
(⇒) If M ′ is satisfiable, let G be a graph that is valid w.r.t. it. If n ∈ nodes(G) it is

easy to see that the following properties are true for graph G: (1) it is valid w.r.t. M (since
M is a subset of M ′), (2) there exists an assignment σ that is faithful (resp. faithful and
total) for M and G, and such that s ∈ σ(n) and ¬s′ ∈ σ(n) (since n satisfies constraints d,
but not d′). One such assignment σ can be obtained by taking an assignment σ′, faithful
for G and M ′, and by removing elements s∗ and ¬s∗ from all the sets in the codomain of
the σ′ function. Thus, shape s is not contained in s′ w.r.t. M . Instead, if n 6∈ nodes(G),
then there exists another graph G′ such that G′ is valid w.r.t. M ′ and n ∈ nodes(G′). One
such graph G′ is G ∪ {<n∗, r∗, n>}, where n∗ and r∗ are, respectively, a fresh constant
and a fresh relation name. This is because the shapes of a SHACL document can only
target nodes mentioned in the document, or those that are reachable by the relations
mentioned in the document. Moreover, the evaluation of any SHACL constraints on a
node is unaffected by that node being the object of a triple with an unknown predicate.
Since G′ satisfies the same properties as G, we can apply the same reasoning as above (as
for case n ∈ nodes(G)) to prove that shape s is not contained in s′ w.r.t. M .

(⇐) If shape s is not contained in s′ w.r.t. M then there exists a graph G, an
assignment σ faithful (resp. faithful and total) for G and M , and a node n such that
s ∈ σ(n) and ¬s′ ∈ σ(n). Therefore, Jd∗Kn,G,σ must be true. Let σ∗ be the extension of
the σ assignment that accounts for the s∗ shape, namely σ∗(j) = σ(j) ∪ {s∗|Jd∗Kj,G,σ =
>}∪{¬s∗|¬Jd∗Kj,G,σ = >}, for any node j in nodes(G,M). It is easy to see that assignment
σ∗ is faithful (resp. faithful and total) for M ′ and G, and thus M ′ is satisfiable.

The above mentioned theorem introduces the following auxiliary decision problem.

Definition 16. Given a SHACL document M , a shape name s not in M and a constraint
d that only references shapes in M ∪ {s}, template satisfiability under brave-partial (resp.
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brave-total) semantics is the problem of deciding whether there exists a node n such that
document M ∪ {〈s, tn, d〉} is satisfiable under brave-partial (resp. brave-total) semantics.

Two additional decision problems, constraint satisfiability and constraint containment,
are defined in [40] to study the properties of non-recursive SHACL constraints. Intuitively,
a constraint d is satisfiable if there exists a node that conforms to d, and a constraint d is
contained in d′ if every node that conforms to d also conforms to d′. We provide here a
generalisation of these problems by introducing a SHACL document as an additional
input. The primary purpose of this additional document is to study constraints under
recursion, that is, constraints that reference recursive shapes. However, it can also be used
to study constraint satisfiability and containment subject to a particular document being
valid. When this document is empty the following decision problems correspond to the
ones defined in [40], namely constraint satisfiability and containment without recursion.

Definition 17. Given a SHACL constraint d and a SHACL document M , such that d
does not reference shapes not included in M , constraint d is satisfiable under extended
semantics α if there exists a node n such that SHACL document M ∪ {〈s, tn, d〉} is
satisfiable under α, where s is a fresh shape name.

Definition 18. Given two SHACL constraints d and d′ and a SHACL documents M
such that d and d′ do not reference shapes not included in M , constraint d is contained in
d′ under extended semantics α if for all nodes n, document M ∪ {〈s, tn, d〉} is contained
in M ∪ {〈s′, tn, d′〉} under α, where s and s′ are fresh shape names.

The problem of constraint satisfiability under brave-partial and brave-total semantics
are, by definition, sub-problems of SHACL template satisfiability for the respective
semantics. Constraint containment for non-recursive SHACL documents is also a sub-
problem of SHACL template satisfiability. This is a consequence of the fact that
containment of two non-recursive SHACL documents can be decided by deciding the
satisfiability of an ∃SCL sentence (Lemma 4). As we will prove later in Section 6,
the problem of template satisfiability can be expressed as ∃SCL sentence satisfiability.
Therefore, our positive results that will be presented in Section 7 also provide decidability
and upper bound complexity results for the decision problems expressible as template
satisfiability, namely (1) shape containment, (2) constraint satisfiability under brave-
partial and brave-total semantics and (3) constraint containment for non-recursive SHACL
documents.

6. From Interpreted To Uninterpreted Models via Filter Axiomatisation

In this section we discuss explicit axiomatizations of the semantics of a set of filters,
inspired by the relational axiomatisation of the LTL path formulae in the conjunctive-
binding fragment of Strategy Logic [2]. The main goal of these axiomatisations is to
account for filter semantics without requiring filters to be interpreted relations. For
any MSCL sentence Φ we construct axiomatisations α such that Φ is satisfiable on a
canonical model if and only if Φ ∧ α is satisfiable on an uninterpreted models, that is,
models whose domain is the set of RDF terms, but where filters and ordering relations
are simple relations instead of interpreted ones. This reduction to standard first-order
logic (FOL) allows us to prove decidability of the satisfiability and containment problems
for several SCL fragments in the face of filters.
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We first present a simplified but expensive formulation of this axiomatisation, that is
exponential on size of the original sentence. We then provide an alternative axiomatisation,
polynomial on size of the original sentence, that however requires counting quantifiers to
express certain filters. We exclude from our axiomatisation the sh:lessThanOrEquals
or sh:lessThan constraints (the O and O’ components of our grammar) that are binary
relations, and which do not belong to any decidable fragment we have so far identified, as
shown in the next section. We also exclude the sh:pattern constraint, which tests whether
the string representation of a node follows an extended version of regular expressions,3

from our polynomial axiomatisation. However, in our simplified axiomatisation we allow
a restricted version of the sh:pattern constraints precisely corresponding to standard
notion of regular expressions (i.e., regular expressions that can be converted into a finite
state machine). All features defined as filters in Sec. 5, with the exception of O and O’
components, are represented by monadic relations F (x) of the SCL grammar. While
equality remains an interpreted relation, for which we do not provide an axiomatisation,
we will also consider equality to a constant c as a monadic filter relation (which we call
equality-to-a-constant) whose interpretation is the singleton set containing c.

6.1. Näıve Axiomatisation

The semantics of each monadic filter relation is a predetermined interpretation over the
domain. For example, the interpretation of filter relation FIRI is the set of all IRIs, since
FIRI(x) is true iff x is an IRI. Notice also that filters are the only components of MSCL
whose interpretation is predetermined. Thus, we can axiomatise the semantics of filters
w.r.t. deciding satisfiability by capturing which conjunctions of filters are unsatisfiable,
and which conjunctions of filters are satisfiable only by a finite set of elements. For
example, the number of elements of the Boolean datatype is two, the number of elements
that are literals is infinite, and there are four elements of integer datatype that are both
greater than 0 and lesser than 5. Let a filter combination F(x) denote a conjunction of
atoms of the form x = c, x 6= c, F (x) or ¬F (x), where c is a constant and F is a filter
predicate. Given a filter combination, it is possible to compute the set of elements of the
domain that can satisfy it. Let γ be the function from filter combinations to subsets of
the domain that returns this set. The computation of γ(F(x)) for the monadic filters we
consider is tedious but trivial as it boils down to determining: (1) the lexical space of
datatypes; (2) the cardinality of intervals defined by order or string-length constraints;
(3) the number of elements accepted by a regular expression; (4) well-known RDF-specific
restrictions, e.g., the fact that each RDF term has exactly one node type, and at most one
datatype and one language tag. Combinations of the previous four points are similarly
computable. Let FΦ be the set of filter combinations that can be constructed with the
filters predicates and constants occurring in an MSCL sentence Φ. The näıve filter
axiomatization α(Φ) of a sentence Φ is the following conjunction, where Σf is a fresh
shape name.

α(φ) =
∧

F(x)∈Fφ,|γ(F(x)) 6=∞|

(∀x. Σf (x)↔ F(x))

3Corresponding to SPARQL REGEX functions [7].
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∧

(
∀x. Σf (x)↔

{
⊥, |γ(F(x))| = 0∨

c∈γ(F(x)) x = c, otherwise

)
To better illustrate this axiomatisation, consider the following MSCL sentence φ∗.

φ∗ = Σ(q) ∧ ∀x.
(
Σ(x)↔∃4y. R(x, y) ∧ F>0(y) ∧ F≤5(y) ∧ F dt=xsd:int(y)

∧ y 6= 2 ∧ y 6= 3
)

Intuitively, this sentence is satisfiable if a constant q can be in the R relation with four
different integers that (a) are greater than 0, (b) that are less than or equal than 5, and
(c), that are not equal to 2 or 3. Since there are only three integers that satisfy the
conditions (a), (b) and (c) simultaneously, this sentence is not satisfiable on a canonical
model. This sentence contains the filters F>0(x), F≤5(x) and F dt=xsd:int(x), that denote,
respectively, the fact that x is greater than the number 0, the fact that x is less or equal
than the number 5, and the fact that x belongs to the XSD integer datatype4. The set
of known constants of φ∗ is {2, 3, q}. We will assume that q is an IRI and that all other
known constants are literals of the XSD integer datatype.

The näıve filter axiomatisation α(φ∗) contains, among others, the following conjuncts,
where Σf is a fresh shape name.(

∀x. Σf (x)↔ F>0(x) ∧ F≤5(x) ∧ F dt=xsd:int(x) ∧ x 6= 2 ∧ x 6= 3
)

∧ (∀x. Σf (x)↔ x = 1 ∨ x = 4 ∨ x = 5)

This axiomatisation states that only three constants satisfy the main filter combination
of φ∗, and thus φ∗ ∧ α(φ∗) is unsatisfiable on an uninterpreted model.

Theorem 5. Given an MSCL sentence φ and its näıve filter axiomatisation α(φ),
sentence φ is satisfiable on a canonical model iff φ∧α(φ) is satisfiable on an uninterpreted
model. Containment φ1 ⊆ φ2 of two MSCL sentences on all canonical models holds iff
φ1 ∧ α(φ1 ∧ φ2) ⊆ φ2 holds on all uninterpreted models.

Proof. We focus on satisfiability, since the proof for containment is similar. Let c be
any element of the domain and F(x) be any filter combination that can be constructed
with the constants and filter relations in φ. Since the semantics of filter relations has
a universal interpretation, F(c) is either true on all canonical models, or false on all
canonical models. Notice that, by construction of our axiomatisation, the truth value of
F(c) on all canonical models corresponds to the truth value of F(c) on all uninterpreted
models of α(φ). Let I ′ be an uninterpreted model of φ ∧ α(φ), we can construct I,
canonical model of φ, by (1) changing all the uninterpreted filter relations in I ′ for their
corresponding interpreted ones in I and (2) dropping from I ′ the interpretation of all the
shape relations that occur in α(φ). Let I be a canonical model of φ, we can construct
I ′, uninterpreted model of φ ∧ α(φ), by (1) changing all the interpreted filter relations
in I for their corresponding uninterpreted ones in I ′ and (2) by adding the following
interpretation of each shape relation Σf (x) occurring in α(φ) to I: let F(x) be the filter
combination such that ∀x. Σf (x)↔ F(x) is one of the conjuncts of α(φ) (notice that one
such conjunct exists for any shape relation), relation Σf contains all the elements of the
domain which satisfy the filter combination F(x) on canonical models.

4The https://www.w3.org/TR/xmlschema11-2/#integer datatype is supported by SPARQL 1.1, and
thus it has a predetermined lexical space.
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6.2. Bounded Axiomatisation

The main exponential factor in the axiomatisations above is the set of all possible filter
combinations. However, we can limit an axiomatisation to filter combinations having a
number of atoms smaller or equal to a constant number, thus making our axiomatisation
polynomial w.r.t. an MSCL sentence Φ. This new axiomatisation is applicable to all
filters considered before, with the exception of sh:pattern. Intuitively, this can be
achieved because FΦ contains several redundant filter combinations. To illustrate this
point, consider datatype filters atoms F dt=c(x), derived from the sh:datatype constraint
component, that are true if x is a literal with datatype c.5 Let Φ be an MSCL sentence
and F(x) be a filter combination F dt=c(x) ∧ F dt=c′(x) of FΦ, where c 6= c′. Since no
RDF term can have two different datatypes, the truth value of F(x) is always false (i.e.
|γ(F(x))| = 0). Trivially, any filter combination in FΦ whose conjuncts are a proper
superset of F(x) is also false, and thus its axiomatisation is not necessary.

In order to limit the size of the filter combinations to a constant number, we reason
about each filter type to determine the maximum number of conjuncts of that type to
consider in any filter combination. We call this number the maximum non-redundant
capacity (MNRC) of that filter type. Any filter combination that contains more conjuncts
of that type than its MNRC, is necessarely redundant.

Definition 19. A filter combination F(x) is redundant if there exists a filter combination
F′(x) such that γ(F(x)) = γ(F′(x)) and F′(x) is a proper subset of F(x).

We will now define the MNRC for all the monadic SHACL filter types. In the following
proofs we will assume that all conjuncts of a filter combination are syntactically different
from each other as any filter combination that contains multiple copies of the same
conjunct is trivially redundant. The MNRC of datatype filters is two.

Lemma 5. Any filter combination F(x) that contains more than two datatype filter
conjuncts is redundant.

Proof. Since no RDF term can have two datatypes, if F(x) contains two positive datatype
filter conjuncts, then F(x) is unsatisfiable. Thus F(x) cannot contain more than two
positive datatype filter conjuncts without being redundant. Since RDF literals do not
need to be annotated with a datatype, any negation ¬F dt=c(x) of a datatype filter does
not affect the truth value of a filter combination, unless the datatype filter also contains
conjunct F dt=c(x), in which case the filter combination is trivially unsatisfiable. Thus, if
F(x) is not redundant, either it does not contain negated datatype filters, or it contains
the two filters F dt=c(x) and ¬F dt=c(x) for a constant c. In this last case, the occurrence
of any further datatype filter in F(x) would make the filter combination redundant.

We represent language tag filters, derived from the sh:languageIn and sh:uniqueLang,
with the F languageTag = c(x) filter relation, which is true if x is string literal with language
tag c. Since not all string literals have a language tag, but no string literal has more than
one such tag, this type of filter behaves analogously to the datatype filter. The proof of
the following lemma, which states that the MNRC of language tag filters is two, can be
derived from the one above.

5According to the SPARQL standard literals with different datatype or language tags are different
RDF terms (e.g. literal “10” of datatype integer is not equal to literal “10” of datatype float).
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Lemma 6. Any filter combination F(x) that contains more than two language tag filter
conjuncts is redundant.

The order comparison filters, which are expressible in SHACL with the sh:minExclusive,
sh:maxExclusive, sh:minInclusive and sh:maxInclusive constraint components, de-
note the x > c, x < c, x ≥ c and x ≤ c operators, respectively. Order comparison filters
have an MNRC of two.

Lemma 7. Any filter combination F(x) that contains more than two order comparison
filter conjuncts is redundant.

Proof. If two order comparison filters in F(x) are defined over incompatible comparison
types (e.g. strings and dates) then F(x) is unsatisfiable, and all the other comparison
filters in F(x) are redundant. In a set of filters, we define as the most restrictive the one
with the smallest number of elements satisfying it, or any such filter if there is more than
one. If all the comparison filters in F(x) are defined over the same comparison type, let α
be the most restrictive conjunct in F(x) of type x > c, ¬x < c, x ≥ c and ¬x ≤ c (or > if
none such conjunct exists), and ω be the most restrictive conjunct in F(x) of type ¬x > c,
x < c, ¬x ≥ c and x ≤ c. Trivially, F(x) is semantically equivalent to F′(x), which is
constructed by removing from F(x) all comparison filters that are not α or ω.

String length comparison filters are expressed in SHACL with the constraint com-
ponents sh:minLength and sh:maxLength, and they behave analogously to the order
comparison filters. The proof of the following lemma, which states that the MNRC of
string length comparison filters is two, can be derived from the one above.

Lemma 8. Any filter combination F(x) that contains more than two string length
comparison filter conjuncts is redundant.

Node kind filters can be represented by three filter relations F IRI(x), F literal(x) and
F blank(x) that are true if x is, respectively, an IRI, a literal or a blank node. Node kind
filters have an MNRC of three.

Lemma 9. Any filter combination F(x) that contains more than three node kind filter
conjuncts is redundant.

Proof. This lemma can be proven in the same manner as Lemma 5, with the exception
that, since all RDF terms belong to exactly one of the tree node kinds, filter combination
¬F IRI(x) ∧ ¬F literal(x) ∧ ¬F blank(x) is unsatisfiable and it is not redundant.

We can establish an MNRC of 1 for the equality-to-a-constant operator (expressed in
SHACL with the sh:hasValue and sh:in constraints), by noticing that any variable x, by
the law of excluded middle, is either interpreted as one of the known constants, or as none
of them. In SCL we can express with Σν(x) the fact that x is none of the known constants
C, where ν is a unique shape name defined as Σν(x) ↔

∧
c∈C ¬x = c. Intuitively, we

consider all possible interactions of the equality operator with filter combinations by
considering whether an element x is one of the known constants, or whether it conforms
to shape Σν(x). In order to use this new shape ν in our axiomatisation, we redefine a
filter combination F(x) as a conjunction of atoms of the form x = c, x¬ = c, Σν(x), F (x)
and ¬F (x).
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Lemma 10. Any filter combination F(x) that contains more than one equality-to-a-
constant conjuncts is redundant.

Proof. Any filter combination F(x) that contains more than one equality-to-a-constant
operator, of which at least one is in positive form, is redundant. In fact, a filter combination
is made redundant by: (a) any two positive equality-to-a-constant operators x = c∧x = c′,
with c 6= c′ (recall that we are using the unique name assumption), which is unsatisfiable
by the standard interpretation of the equality operator, and (b) any pair of a positive
and a negative equality-to-a-constant operators x = c ∧ x 6= c′ because (b.1) if c and
c′ are the same constant, then the pair of conjuncts is unsatisfiable by the standard
interpretation of the equality operator and (b.2) if c is not the same constant as c′ then
conjunct ¬x = c′ is redundant.

Moreover, any filter combination F(x) that contains equality-to-a-constant operators,
but all negated, is also redundant. Let D be the domain of discourse, C be the set
of known constants in the sentence Φ from which the filter combinations have been
created, and C− the set of constants that are in the negated equality-to-a-constant
operators of F(x). The equality-to-a-constant operators in F(x) restricts the domain
to elements D \ C−. Let F∗(x) be the subset of F(x) without equality-to-a-constant
conjuncts. We can rewrite F(x) into an equivalent set of filter combinations F̄ that contain
at most one equality-to-a-constant operator by noticing that we can rewrite D \ C− as
(D \ C) ∪ (C \ C−), and that the left-hand side of this last union of sets corresponds to
the elements in the interpretation of Σν(x), while the right-hand side is a finite set of
known constants. The set of filter combinations F̄ that makes F(x) redundant is defined
as follows: F̄ = {F∗(x) ∧ Σν(x)} ∪ {F∗(x) ∧ x = c|c ∈ C \ C−}. Since every element of
the domain either belongs to Σν(x) or it is one of the known constants, the restrictions
imposed by F(x) and by the set F̄ are equivalent.

The only filter constraint that does not have a maximum non-redundant capacity
is sh:pattern, since any number of regular expressions can be combined together to
generate novel and non-redundant regular expressions.

We define the set of bounded filter combinations F
′φ of an MSCL sentence φ the set

of all conjunctions such that (1) the conjuncts are atoms of the form x = c, Σν(x), F (x)
or ¬F (x), where c is a constant occurring in φ and F is a filter predicate occurring in
φ; (2) the number of conjuncts of each filter type, and of equality, does not exceed its
maximum non-redundant capacity.

Notice that in the previous axiomatisation the size of each conjunct depends on
the size of the finite sets computed by the γ function. While certain filter constraints,
such as sh:nodeKind, are either satisfiable by an infinite number of elements, or are
unsatisfiable, other constraints can be satisfied by an arbitrarily large number of elements.
We can reduce the size of each conjunct to a logarithmic factor (with a binary numeric
representation) by using counting quantifiers. This allows us to express the maximum
number of elements that can satisfy a filter combination without explicitly enumerating
them.

Given an MSCL sentence φ and the set C of all known constants in φ, the bounded
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axiomatisation ᾱ(φ) of φ is defined as follows.

ᾱ(φ) =

(
Σν(x)↔

∧
c∈C
¬x = c

)
∧

∧
F(x)∈F′φ,|γ(F(x))6=∞|

∃≤γ(F(x))x. F(x)

By lemmas 5 to 10, if φ does not contain any filter of the sh:pattern type, the
bounded axiomatisation only includes filter combinations of up to 12 conjuncts. Thus,
the size of the bounded axiomatisation is polynomial w.r.t. φ.

To better explain this second axiomatisation, let us consider again the example of the
MSCL sentence φ∗ defined before. The bounded axiomatisation ᾱ(φ∗) of φ∗ contains,
among others, the following conjuncts:

(Σν(x)↔ x 6= 2 ∧ x 6= 3 ∧ x 6= q)

∧
(
∃≤5x. F>0(x) ∧ F≤5(x) ∧ F dt=xsd:int(x)

)
∧
(
∃≤3x. F>0(x) ∧ F≤5(x) ∧ F dt=xsd:int(x) ∧ Σν(x)

)
∧
(
∃≤0x. F>0(x) ∧ F≤5(x) ∧ F dt=xsd:int(x) ∧ x = q

)
Of the four elements required by the existentially bounded sub-formula of φ∗ to

satisfy a filter combination, only three can belong to Σν(x) (by the third line of the
axiomatisation). The remaining one must satisfy both (x = 2 ∨ x = 3 ∨ x = q) and
x 6= 2 ∧ x 6= 3, and thus cannot be a constant other than q. However, q is not compatible
with the filter combination (by the last line of the axiomatisation). Therefore, φ∗ ∧ ᾱ(φ∗)
is unsatisfiable on an uninterpreted model.

It should be noted that the bounded axiomatisation does not follow the MSCL
grammar, while the näıve filter axiomatisation does, albeit not resulting in well-formed
sentences. The differences between our axiomatisations and well-formed MSCL sentences,
however, do not affect our decidability and complexity results presented in the following
section since (a), the positive results are applicable to fragments of first-order logic that are
general enough to express our axiomatisations and (b), the negative results are applicable
to SHACL sentences without filters, which therefore do not require an axiomatisation.
For the purposes of the decidability and complexity analysis presented in the following
section, the näıve filter axiomatisation is compatible with all of the language fragments,
while the bounded filter axiomatisation is compatible with the fragments that include
counting quantifiers.

Theorem 6. Given an MSCL sentence φ and its bounded filter axiomatisation ᾱ(φ),
sentence φ is satisfiable on a canonical model iff φ∧ ᾱ(φ) is satisfiable on an uninterpreted
model. Containment φ1 ⊆ φ2 of two MSCL sentences on all canonical models holds iff
φ1 ∧ ᾱ(φ1 ∧ φ2) ⊆ φ2 holds on all uninterpreted models.

Proof. We focus on satisfiability, since the proof for containment is similar. First notice
that every canonical model I of Φ is necessarily a model of φ∧α(φ). Indeed, by definition
of the function γ, given a filter combination F(x), there cannot be more than |γ(F(x))|
elements satisfying F(x), independently of the underlying canonical model. Thus, I
satisfies α(φ). Consider now a model I of φ ∧ α(φ) and let I? be the structure obtained
from I by replacing the interpretations of the monadic filter relations with their canonical
ones. Obviously, for any filter combination F(x), there are exactly |γ(F(x))| elements
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in I? satisfying F(x), since I? is canonical. As a consequence, there exists a injection ι
between the elements satisfying F(x) in I and those satisfying F(x) in I?. At this point,
one can prove that I? satisfies Φ. Indeed, every time a value x, satisfying F(x) in I, is
used to verify a subformula ψ of Φ in I, one can use the value ι(x) to verify the same
subformula ψ in I?.

6.3. From Template Satisfiability to MSCL Satisfiability

As anticipated in the previous section, the problem of template satisfiability (Def.
16) can be reduced into an ∃SCL satisfiability problem. In particular, achieving this
reduction in the face of filters requires the additional machinery of the bounded filter
axiomatisation. The correspondence between SHACL template satisfiability and ∃SCL
sentence satisfiability is given by the following theorem. The intuition behind this theorem
is that, in an uninterpreted model, unknown constant symbols are interchangeable.
Therefore, on an uninterpreted model, considering template satisfiability for one unknown
constant symbol amounts to considering this problem for all possible constants. Let
Constant(φ) denote the set of constants in φ.

Theorem 7. The answer to the template satisfiability problem for M , s and d under
brave-total semantics is True iff there exists a constant symbol f ∈ Constant(φ) ∪ {c},
with c a fresh constant symbol, such that φ∧ ᾱ(φ)∧Σs(f) is satisfiable on an uninterpreted
model, where φ = τ(M ∪ {〈s, ∅, d〉}).

Proof. Recall that, by Theorem 6, there exists a canonical model I ′ such that I |= φ∧Σs(n)
iff there exists an uninterpreted model J such that J |= φ ∧ Σs(n) ∧ ᾱ(φ ∧ Σs(n)).

(⇒) Assume that the answer to the template satisfiability problem for M , s and d
under brave-total semantics is true. Per Def. 16 this means that there exists an RDF
graph G and a node n such that G is valid w.r.t. M ∪ {〈s, tn, d〉}. From the translation
of target declarations in Table 3 it follows that τ(M ∪ {〈s, tn, d〉}) can be written as
φ∧Σs(n), where φ = τ(M ∪{〈s, ∅, d〉}). Moreover, by Theorem 3, there exists a canonical
structure I such that I |= τ(M ∪ {〈s, tn, d〉}), which means that I |= φ ∧ Σs(n), thanks
to our previous observation. Consider the following cases: (1) n ∈ Constant(φ) and (2)
n 6∈ Constant(φ)

In the first case, let f be n. Then there exists an uninterpreted model J such that
J |= φ ∧ Σs(f) ∧ ᾱ(φ ∧ Σs(f)). Notice also that the bounded filter axiomatisation of an
MSCL sentence ρ depends only on the set of filter relations and the set of constants in ρ.
Therefore, if n ∈ Constant(φ) then ᾱ(φ ∧ Σs(f)) = ᾱ(φ). Thus the thesis follows.

In the second case there exists an uninterpreted model J and a constant n such that
J |= φ ∧ Σs(n) ∧ ᾱ(φ ∧ Σs(n)). Notice that ᾱ(φ ∧ Σs(n)) implies ᾱ(φ), since sentence
φ ∧ Σs(n) contains the same filter relations as φ, and all the constants of φ plus one
additional constant. The additional constant in φ ∧ Σs(n) only results in a stronger
axiomatisation that considers more cases. Thus J |= φ ∧ ᾱ(φ) and Σs is not empty in
J . Let J∗ be the extension of the uninterpreted model J where constant symbol f is
mapped to n, then J∗ |= φ ∧ ᾱ(φ) ∧ Σs(f) as required by the theorem statement.

(⇐) Assume that there exists an uninterpreted model J such that J |= φ∧ᾱ(φ)∧Σs(f).
We distinguish two cases similar to the cases discussed before: (1) f ∈ Constant(φ) and
(2) f 6∈ Constant(φ).

In the first case, the thesis can be proven by following the reverse proof of the first
case of the previous directionality. More specifically, ᾱ(φ) = ᾱ(φ ∧ Σs(f)) and thus
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J |= φ ∧ ᾱ(φ ∧ Σs(f)) ∧ Σs(f). By Theorem 6 there exists a canonical model I such that
I |= φ ∧ Σs(f).

In case (2), we prove that J |= φ ∧ ᾱ(φ) ∧ Σs(f) implies the existence of a value v
in the domain of constants such that the uninterpreted model J [f 7→ v] (obtained by
mapping constant symbol f to v in J) models φ ∧Σs(f) ∧ ᾱ(φ ∧Σs(f)). If no such value
v exists, then it must follow that there exist a non-empty filter combination F, without
equality operators, such that J |= F(f), but such that ᾱ(φ ∧ Σs(f))→ ∀x.¬F(x). Since
F does not contain equality operators, and since φ ∧Σs(f) and φ contain the same shape
relations, it follows that ᾱ(φ) → ∀x.¬F(x), which is in contradiction to the premises.
Intuitively, this is due to the fact that the interpretation of filters is universal, so if a
filter combination F is unsatisfiable, it is unsatisfiable in all axiomatisations whose filter
relations can express F. Having proven the existence of uninterpreted model J [f 7→ v],
such that J [f 7→ v] |= φ∧Σs(f)∧ ᾱ(φ∧Σs(f)) the existence of a canonical model I such
that I |= φ ∧ Σs(v) easily follows, and thus the thesis is proven.

By this theorem, the positive decidability results that we will present in Sect. 7 are
also applicable to SHACL template satisfiability, and the complexity of the corresponding
decision procedures can be considered an upper bound for the complexity of SHACL
template satisfiability in the same fragment, when it is at least polynomial. This, in
turn, allows us to extend our positive results to many of the additional decision problems
discussed in Section 5.2.

7. SCL Satisfiability

We finally embark on a detailed analysis of the satisfiability problem for different
fragments of SCL. Some of the proven and derived results for sentences are visualised in
Figure 3.

The decidability results are proved via embedding in known decidable (extensions
of) fragments of first-order logic, while the undecidability ones are obtained through
reductions from either the classic domino problem [57] or the subsumption problem of
constructs called role-value maps [53] in Description Logic [5], that are undecidable even
in very restricted forms [24].

Since we are not considering filters explicitly, but through axiomatisation, the only
interpreted relations are the standard equality and the orders between elements.

For the sake of clarity and readability, the map depicted in the figure is not complete
w.r.t. two aspects. First, it misses few fragments whose decidability can be immediately
derived via inclusion into a more expressive decidable fragment, e.g., Z A D E C or S Z A T

D. Second, the remaining missing cases have an open decidability problem. In particular,
while there are several decidable fragments containing the T feature, we do not know
any decidable fragment with the O or O’ features. Notice that the undecidability results
exploiting the last two features are only applicable in the case of generalised RDF.

The letters denoting all SCL fragments directly correspond to SHACL constraint
components, as specified in Table 4. The (un)decidability of an SCL fragment α translates
to the (un)decidability of our decision problems for the corresponding SHACL fragment,
that is, the fragment that excludes the constraint components identified by the letters
not included in α. The results reported in Figure 3 show that the decidability of our
decision problems for SHACL fragments is achieved by the exclusion of either complex
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∅

AOS C E

S EA OS CS OS A A C E O E C A E

S A ES E OS A CS A O S E C A E O A E C

S Z A ES Z A D S A D E Z A D E

S Z A D ES A E OS Z A D CS Z A D O S A E C Z A D E O Z A D E C

S Z A T ES Z A T D S A T D E Z A T D E

S Z A T D ES Z A T D O S Z A T D C Z A T D E CZ A T D E O

S Z A T D E OS Z A T D O C S Z A T D E C Z A T D E O C

Figure 3: Decidability and complexity map of SCL sentence fragments. Round (blue) and square (red)
nodes denote decidable and undecidable fragments, respectively. Solid borders on nodes correspond
to theorems in this paper, while dashed ones are implied results. Directed edges indicate inclusion
of fragments, while bidirectional ones denote polynomial-time reducibility. Solid edges are preferred
derivations to obtain tight results from a complexity viewpoint, while dotted ones leads to worst upper-
bounds or just model-theoretic properties. Finally, a light blue background indicates that the fragment
enjoys the finite-model property, while those with a light red background do not satisfy such a property.
Nothing is known for the ZATDE fragment reported in the figure. Letters denote the components of each
given fragment: sequence (S), zero-or-one (Z), alternative (A) and transitive (T) paths; disjointness (D),
order (O) and equality (E) of property pairs; cardinality constraints (C).

constraint components or complex path expressions. This is exemplified by the two
largest decidable fragments. The S Z A T D fragment (shown on the left of the figure),
contains all of the SHACL path expressions, but it excludes three constraint components,
namely cardinality constraints and both the property pair equality and order constraints.
The Z A D E C fragment (shown on the right of the figure), in contrast, contains all
SHACL constraints, with the exception of the property pair order one, but significantly
restricts the path expressions. In Z A D E C, predicate paths (i.e., single relations) can
only be combined with the zero-or-one path expression. It is also worth noting that
the following SHACL features are included in the base grammar ∅, which is decidable:
logical constraint components (e.g., conjunction, disjunction, and negation of constraints);
filter constraints; shape references (potentially recursive); a limited form of the cardinality
constraint that can only express cardinality ≥ 1.
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7.1. Decidability Results

As a preliminary result, we show that the base language ∅ is already powerful enough
to express properties writable by combining the S, Z, and A features. In particular, the
last one does not increase in expressive power when the D and O features are also taken in
consideration.

Theorem 8. There are (a) semantic-preserving and (b) polynomial-time finite-model-
invariant satisfiability-preserving translations among the following SCL fragments: 1.
∅ ≡ S ≡ Z ≡ A ≡ S Z ≡ SA ≡ ZA ≡ SZA; 2. D ≡ AD; 3. O ≡ AO; 4. DO ≡ ADO.

Proof. To show the equivalences among the fourteen SCL fragments mentioned in the
statement, we consider the following first-order formula equivalences that represent few
distributive properties enjoyed by the S, Z, and A features w.r.t. some of the other language
constructs. The verification of their correctness only requires the application of standard
properties of Boolean connectives and first-order quantifiers.

• [S] The sequence combination of two path formulae π1 and π2 in the body of an
existential quantification is removed by nesting two plain quantifications, one for
each πi:

∃y. (∃z. π1(x, z) ∧ π2(z, y)) ∧ ψ(y) ≡ ∃z. π1(x, z) ∧ (∃y. π2(z, y) ∧ ψ(y)).

• [Z] The Z path construct can be removed from the body of an existential quantifica-
tion on a free variable x by verifying whether the formula ψ in its scope is already
satisfied by the value bound to x itself:

∃y. (x = y ∨ π(x, y)) ∧ ψ(y) ≡ ψ(x) ∨ ∃y. π(x, y) ∧ ψ(y).

• [A] The removal of the A path construct from the body of an existential quantifier
or of the D and O constructs can be done by exploiting the following equivalences:

∃y. (π1(x, y) ∨ π2(x, y)) ∧ ψ(y) ≡ (∃y. π1(x, y) ∧ ψ(y))∨
∨ (∃y. π2(x, y) ∧ ψ(y));

¬∃y. (π1(x, y) ∨ π2(x, y)) ∧ R(x, y) ≡ (¬∃y. π1(x, y) ∧ R(x, y))∧
∧ (¬∃y. π2(x, y) ∧ R(x, y));

∀y, z. (π1(x, y) ∨ π2(x, y)) ∧ R(x, z)→ σ(y, z) ≡ (∀y, z. π1(x, y) ∧ R(x, z)→ σ(y, z))∧
∧ (∀y, z. π2(x, y) ∧ R(x, z)→ σ(y, z))

At this point, the equivalences between the fragments naturally follow by an iterative
application of the reported equivalences used as rewriting rules. This clearly concludes
the proof of Item a.

The removal of the Z and A constructs from an existential quantification might lead,
however, to an exponential blow-up in the size of the formula due to the duplication of the
body ψ of the quantification. Therefore, to prove Item b, i.e., to obtain polynomial-time
finite-model-invariant satisfiability-preserving translations, we first construct from the
given sentence ϕ a finite-model-invariant equisatisfiable sentence ϕ?. The latter has size
linear in the original one and all the bodies of its quantifications are just plain relations.
Then, we apply the above described semantic-preserving translations to ϕ? that, in the
worst case, only leads to a doubling of the size. The sentence ϕ? is obtained by iteratively
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applying to ϕ the following two rewriting operations, until no complex formula appears in
the scope of an existential quantification. Let ψ′(x) = ∃y. π(x, y) ∧ ψ(y) be a subformula,
where ψ(y) does not contain quantifiers other than possibly those of the S, D, and O

features. Then: (i) replace ψ′(x) with ∃y. π(x, y) ∧ Σ(y), where Σ is a fresh monadic
relation; (ii) conjoin the resulting sentence with ∀x.Σ(x) ↔ ψ(x). The two rewriting
operations in isolation only lead to a constant increase of the size and are applied only a
linear number of times.

It turns out that the base language ∅ resembles the description logic ALC extended
with universal roles, inverse roles, and nominals [5]. This resemblance is effectively
exploited as a key observation at the core of the following result.

Theorem 9. All SCL subfragments of SZA enjoy the finite-model property and an
ExpTime-complete satisfiability problem.

Proof. The finite-model property follows from the fact that the subsuming S Z A D fragment
enjoys the same property, as shown later on in Theorem 12.

As far as the satisfiability problem is concerned, thanks to Item 1 of Theorem 8, we
can focus on the base fragment ∅.

On the one hand, on the hardness side, one can observe that the description logic ALC
extended with inverse roles and nominals (ALCOI) [5] and the fragment ∅ deprived of
the universal quantifications at the level of sentences (i.e., the ∅ subfragment generated
by grammar rule ϕ :=> | ϕ ∧ ϕ | Σ(c)) are linearly interreducible. Indeed, every
existential modality ∃R.C (resp., ∃R−.C) can be translated back-and-forth to the SCL
construct ∃y.R(x, y) ∧ ψC(y) (resp., ∃y.R−(x, y) ∧ ψC(y)), where ψC represents the
recursive translation of the concept C. Moreover, every nominal n corresponds to the
equality construct x = cn, where a natural bijection between nominals and constant
symbols is considered. At this point, since the aforementioned description logic has an
ExpTime-complete satisfiability problem [52, 15], it holds that the same problem for
all subfragments of S Z A is ExpTime-hard.

On the other hand, completeness follows by observing that the universal quantifications
at the level of sentences can be encoded in the further extension of ALC with the universal
role U [52, 28, 47], which has an ExpTime-complete satisfiability problem [51]. Indeed,
the universal sentences of the form (a) ∀x. isA(x, c)→ Σ(x), (b) ∀x, y.R±(x, y)→ Σ(x),
(c) and ∀x.Σ(x) ↔ ψ(x) can be translated, respectively, as follows: (a) nc ∧ ∀isA−.Σ,
where nc is the nominal for the constant c; (b) ∀U .∀R∓.Σ; (c) ∀U .(Σ ↔ Cψ), where Cψ
is the concept obtained by translating the ∅-formula ψ into ALCOI.

To derive properties of the Z A D E fragment, together with its sub-fragments (two of
those – E and A E – are included in Figure 3), we leverage on the syntactic embedding in
the two-variable fragment of first-order logic [38].

Theorem 10. The ZADE fragment of SCL enjoys the finite-model property and a NExpTime
satisfiability problem.

Proof. Via a syntactic inspection of the SCL grammar one can observe that, by avoiding
the S and O features of the language, it is only possible to write formulae with at most
two free variables. For this reason, every Z A D E-formula belongs to the two-variable
fragment of first-order logic [38] which is known to enjoy both the exponentially-bounded
finite-model property and a NExpTime-complete satisfiability problem [21].
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The embedding in the two-variable fragment used in the previous theorem can be
generalised when the C feature is added to the picture. However, the gained additional
expressive power does not come without a price, since the finite-model property is not
preserved.

Theorem 11. The non-recursive C fragment of SCL does not enjoy the finite-model
property (on both sentences and formulae) and has a NExpTime-hard satisfiability
problem. Nevertheless, the finite and unrestricted satisfiability problems for the ZADEC

fragment are NExpTime-Complete.

Proof. As for the proof of Theorem 10, one can observe that every Z A D E C-formula
belongs to the two-variable fragment of first-order logic extended with counting quantifiers.
Such a logic does not enjoy the finite-model property [22], since it syntactically contains
a sentence that encodes the existence of an injective non-surjective function from the
domain of the model to itself. The non-recursive C fragment of SCL allows us to express a
similar property via the following sentence ϕ, thus proving the first part of the statement:

ϕ , isA(0, c) ∧Σ(0) ∧ ∀x.Σ(x)↔ ψ1(x) ∧ ∀x. isA(x, c)→ ψ2(x);

ψ1(x) , ¬∃y.R−(x, y);

ψ2(x) , ∃=1y. (R(x, y) ∧ isA(y, c)) ∧ ¬∃≥2y.R−(x, y).

Intuitively, the first three conjuncts of ϕ force every model of the sentence to contain
a distinguished element 0 that (i) does not have any R-predecessor and (ii) is related
to an arbitrary but fixed constant c w.r.t. isA. In other words, 0 is contained in the
domain of the relation isA, but is not contained in the image of the relation R. Then,
the final conjunct of ϕ ensures that every element related to c w.r.t. isA has exactly one
R-successor, also related to c in the same way, and at most one R-predecessor. Thus, a
model of ϕ must contain an infinite chain of elements pairwise connected by the functional
relation R.

It is interesting to observe that the ability to model an infinity axiom is already present
at the level of constraints, as witnessed by the following C-formula, where the constant
0 is replaced by the existentially quantified variable x, where ψ1(x) and ψ2(x) are the
previously introduced formulae with one free variable:

ψ̃(z), (z = c) ∧ ∃x. (isA−(z, x) ∧ ψ1(x)) ∧ ∀x. isA−(z, x)→ ψ2(x).

By generalising the proof of Theorem 9, one can notice that the C fragment of
SCL semantically subsumes the description logic ALC extended with inverse roles,
nominals, and cardinality restrictions (ALCOIQ) [5]. Indeed, every qualified cardinality
restriction (≥ nR.C) (resp., (≤ nR.C)) precisely corresponds to the SCL construct
∃≥ny.R(x, y)∧ψC(y) (resp., ¬∃≥n+1y.R(x, y)∧ψC(y)), where ψC represents the recursive
translation of the concept C. Thus, the hardness result for C follows by recalling that the
specific ALC language has a NExpTime-hard satisfiability problem [54, 34].

On the positive side, however, the extension of the two-variable fragment of first-order
logic with counting quantifiers has decidable finite and unrestricted satisfiability problems.
Specifically, both can be solved in NExpTime, even in the case of binary encoding of the
cardinality constants [42, 43]. Hence, the second part of the statement follows as well.
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For the S Z A D fragment, we obtain model-theoretic and complexity results via an
embedding in the unary-negation fragment of first-order logic [9]. When the T feature is
considered, the same embedding can be adapted to rewrite S Z A T D into the extension
of the mentioned first-order fragment with regular path expressions [25]. Unfortunately,
as for the addition of the C feature to Z A D E, we need to pay the price of losing the
finite-model property.

Theorem 12. The SZAD fragment of SCL enjoys the finite-model property, while the
non-recursive STD fragment does not (on both sentences and formulae). Nevertheless,
the finite and unrestricted satisfiability problems for the SZATD fragment are solvable in
2ExpTime.

Proof. By inspecting the SCL grammar, one can notice that every formula that does not
make use of the T, E, O, and C constructs can be translated into the standard first-order
logic syntax, with conjunctions and disjunctions as unique binary Boolean connectives,
where negation is only applied to formulae with at most one free variable. For this reason,
every S Z A D-formula semantically belongs to the unary-negation fragment of first-order
logic, which is known to enjoy the finite-model property [9, 10].

Mutatis mutandis, every S Z A T D-formula belongs to the unary-negation fragment of
first-order logic extended with regular path expressions [25]. Indeed, the grammar rule
π(x, y) of SCL, precisely resembles the way the regular path expressions are constructed
in the considered logic, when one avoids the test construct. Unfortunately, as for
the two-variable fragment with counting quantifiers, this logic also fails to satisfy the
finite-model property since it is able to encode the existence of a non-terminating path
without cycles. The non-recursive S T D fragment of SCL allows us to express the
same property, as described in the following. First of all, consider the S T-path-formula
π(x, y),∃z. (R−(x, z) ∧ (R−(z, y))?). Obviously, π(x, y) holds between two elements x
and y of a model iff there exists a non-trivial R-path (of arbitrary positive length) that,
starting in y, leads to x. Now, by writing the S T D-formula ψ(x),¬∃y. (π(x, y)∧R(x, y)),
we express the fact that an element x does not belong to any R-cycle since, otherwise,
there would be an R-successor y able to reach x itself. Thus, by ensuring that every
element in the model has an R-successor, but does not belong to any R-cycle, we can
enforce the existence of an infinite R-path. The non-recursive S T D sentence ϕ expresses
exactly this property, where c is an arbitrary but fixed constant:

ϕ, isA(0, c) ∧ ∀x. isA(x, c)→ (ψ(x) ∧ ∃y. (R(x, y) ∧ isA(y, c))).

The same can be stated via the following non-recursive S T D-formula:

ψ̃(z),(z = c) ∧ isA(0, z) ∧ ∀x. isA−1(z, x)→ (ψ(x) ∧ ∃y. (R(x, y) ∧ isA(y, c))).

On the positive side, however, the extension of the unary-negation fragment of first-
order logic with arbitrary transitive relations or, more generally, with regular path
expressions has decidable finite and unrestricted satisfiability problems. Specifically, both
can be solved in 2ExpTime [3, 25, 13].

At this point, it is interesting to observe that the O feature allows us to express a
very weak form of counting restriction which is, however, powerful enough to describe an
infinity axiom.
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Theorem 13. The non-recursive O and EO′ fragments of SCL do not enjoy the finite-
model property (on both sentences and formulae).

Proof. Similarly to the use of the C construct of SCL, a simple combination of just few
instances of the O feature allows us to write the following sentence ϕ encoding the existence
of an injective function that is not surjective. Indeed, a weaker version of the role of the
counting quantifier is played here by the O’ construct that enforces the functionality of
the two relations R and S . Then, by applying both O’ and O to the inverse of R and S ,
we ensure that S is equal to R−, which in its turn implies that the latter is functional as
well. Hence, the statement of the theorem immediately follows.

ϕ , isA(0, c) ∧Σ(0) ∧ ∀x.Σ(x)↔ ψ1(x) ∧ ∀x. isA(x, c)→ ψ2(x);

ψ1(x) , ¬∃y.R−(x, y);

ψ2(x) , ∃y. (R(x, y) ∧ isA(y, c))

∧ ∀y, z.R(x, y) ∧ R(x, z)→ y ≤ z ∧ ∀y, z.S (x, y) ∧ S (x, z)→ y ≤ z
∧ ∀y, z.R−(x, y) ∧ S (x, z)→ y ≤ z ∧ ∀y, z.R−(x, y) ∧ S (x, z)→ y ≥ z.

To show that the E O’ fragment does not enjoy the finite-model property too, it is
enough to replace the last two applications of the O’ and O features with the E-formula
∀y.R−(x, y)↔ S (x, y), which clearly ensures the functionality of R−, being S functional.

Notice that also in this case we can express the above property at the level of formulae
with one free variable, where ψ1(x) and ψ2(x) are defined as above:

ψ̃(z), (z = c) ∧ ∃x. (isA−(z, x) ∧ ψ1(x)) ∧ ∀x. isA−(z, x)→ ψ2(x).

7.2. Undecidability Results

In the remaining part of this section, we show the undecidability of the satisfiability
problem for several fragments of SCL through a semi-conservative reduction from (1) the
standard domino problem [57, 6, 45], whose solution is known to be Π1

0-complete (see
Theorems 14 and 15) and (2) and the subsumption problem of role-value maps [53] in DL
(see Theorem 16).

A N× N tiling system 〈T,H ,V 〉 is a structure built on a non-empty set T of domino
types, a.k.a. tiles, and two horizontal and vertical matching relations H ,V ⊆ T × T.
The domino problem asks for a compatible tiling of the first quadrant N × N of the
discrete plane, i.e., a solution mapping ð : N× N → T such that, for all x, y ∈ N, both
(ð(x, y),ð(x+ 1, y)) ∈ H and (ð(x, y),ð(x, y + 1)) ∈ V hold true.

Theorem 14. The sentence satisfiability problems of the non-recursive SO, SAC, SEC,
SEO′, and SZAE fragments of SCL are undecidable, even with a bounded number (4, 3, 4,
4, and 8, respectively) of binary relations.

Proof. The main idea behind the proof is to embed a tiling system into a model of a
particular SCL sentence ϕ that is satisfiable iff the tiling system allows for an admissible
tiling. The hardest part in the reduction consists in the definition of a satisfiable sentence
all of whose models homomorphically contain the infinite grid of the tiling problem. In
other words, this sentence should admit an infinite square grid graph as a minor of the
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model unwinding. Given that, the remaining part of the reduction can be carried out in
the base language ∅.

Independently of the fragment we choose to prove undecidable, consider the following
definition:

ϕ,
(∨

t∈T isA(0, t)
)
∧
(∧

t∈T ∀x. isA(x, t)→ (ψtT (x) ∧ ψG(x))
)
.

Intuitively, the first conjunct ensures the existence of the point 0, i.e., the origin of the
grid, labelled by some arbitrary tile in the set T. Notice that T is lifted to a set of
constants in SCL. The second conjunct, then, states that all points x, labelled by some
tile t, need to satisfy the properties expressed by the two monadic formulae ψtT (x) and
ψG(x). The first one, called tiling formula, is used to ensure the admissibility of the tiling,
while the second one, called grid formula, forces all models of ϕ to necessarily embed a
grid.

ψtT (x),
t′ 6=t∧
t′∈T

¬isA(x, t′)

∧

∀y. H(x, y)→
∨

(t,t′)∈H

isA(y, t′)

 ∧
∀y. V(x, y)→

∨
(t,t′)∈V

isA(y, t′)

.
The first conjunct of the tiling formula ψtT (x) verifies that the point associated with the
argument x is labelled by no other tile than t itself. The second part, instead, ensures that
the points y on the right or above of x are labelled by some tile t′ which is compatible with
t, w.r.t. the constraints imposed by the horizontal H and vertical V matching relations,
respectively. Notice here that the relation symbols H and V are the syntactic counterpart
of H and V , respectively.

At this point, we can focus on the grid formula ψG(x) defined as follows:

ψG(x), (∃y. H(x, y)) ∧ (∃y. V(x, y)) ∧ γ(x).

The first two conjuncts guarantee the existence of an horizontal and vertical adjacent
of the point x, while the subformula γ(x), whose definition depends on the considered
fragment of SCL, needs to enforce the fact that x is the origin of a square. In other
words, this means that, going horizontally and then vertically or, vice versa, vertically
and then horizontally, the same point is reached. To do this, we make use of the two
S-path-formulae πHV(x, y),∃z. (H(x, z) ∧ V(z, y)) and πVH(x, y),∃z. (V(x, z) ∧ H(z, y)). In
some cases, we also consider the S A-path-formula πD(x, y),πHV(x, y)∨πVH(x, y) combining
the previous ones, which implicitly define a diagonal relation. We now proceed by a case
analysis on the specific fragment.

• [SO] By assuming the existence of a non-empty relation D connecting a point with
its opposite in the square, i.e., the diagonal point, we can express the fact that all
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points reachable through πHV or πVH are, actually, the same unique point:

γ(x), ∃y. D(x, y)

∧ ∀y, z. πHV(x, y) ∧ D(x, z)→ y ≤ z
∧ ∀y, z. πHV(x, y) ∧ D(x, z)→ y ≥ z
∧ ∀y, z. πVH(x, y) ∧ D(x, z)→ y ≤ z
∧ ∀y, z. πVH(x, y) ∧ D(x, z)→ y ≥ z.

The S O-formula γ(x) ensures that the relation D is both non-empty and functional
and that all points reachable via πHV or πVH are necessarily the single one reachable
through D.

• [SAC] By applying a counting quantifier to the formula πD, which encodes the union
of the points reachable through πHV or πVH, we can ensure the existence of a single
diagonal point:

γ(x),¬∃≥2y. πD(x, y).

• [SEC] As for the S O fragment, here we use a diagonal relation D, which needs to
contain all and only the points reachable via πHV or πVH. By means of the counting
quantifier, we enforce its functionality:

γ(x), ¬∃≥2y. D(x, y)

∧ ∀y. πHV(x, y)↔ D(x, y)

∧ ∀y. πVH(x, y)↔ D(x, y).

• [SEO′] This case is similar to the previous one, where the functionality of D is
obtained by means of the O’ construct:

γ(x), ∀y, z. D(x, y) ∧ D(x, z)→ y ≤ z
∧ ∀y. πHV(x, y)↔ D(x, y)

∧ ∀y. πVH(x, y)↔ D(x, y).

• [SZAE] The proof for this final case is inspired by the one proposed for the un-
decidability of the guarded fragment extended with transitive closure of binary
relations [20]. This time, the functionality of the diagonal relation D is indirectly
ensured by the conjunction of the four formulae γ1(x), γ2(x), γ3(x), and γ4(x) that
exploit all the features of the fragment:

γ(x), γ1(x) ∧ γ2(x) ∧ γ3(x) ∧ γ4(x)

∧ ∀y. πD(x, y)↔ D(x, y),
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where

γ1(x), ∀y.

 ∨
i∈{0,1}

Di(x, y)

↔ D(x, y),

γ2(x),

 ∨
i∈{0,1}

¬∃y. Di(x, y)

 ∧
 ∧
i∈{0,1}

∀y. Di(x, y)→ ∃z. D1−i(y, z)

,
γ3(x),

∧
i∈{0,1}

∀y.
(
x = y ∨ Di(x, y) ∨ D−i (x, y)

)
↔ Ei(x, y), and

γ4(x),
∧

i∈{0,1}

∀y.(∃z. (Ei(x, z) ∧ Ei(z, y)))↔ Ei(x, y).

Intuitively, γ1 asserts that D is the union of the two accessory relations D0 and D1,
while γ2 guarantees that a point can only have adjacents w.r.t. just one relation
Di and that these adjacents can only appear as first argument of the opposite
relation D1−i. In addition, γ3 ensures that the additional relation Ei is the reflexive
symmetric closure of Di and γ4 forces Ei to be transitive too.

We can now prove that the relation D is functional. Suppose by contradiction that
this is not case, i.e., there exist values a, b, and c in the domain of the model of the
sentence ϕ, with b 6= c such that both D(a, b) and D(a, c) hold true. By the formula
γ1 and the first conjunct of γ2, we have that Di(a, b) and Di(a, c) hold for exactly
one index i ∈ {0, 1}. Thanks to the full γ2, we surely know that a 6= b, a 6= c, and
neither Di(b, c) nor Di(c, b) can hold. Indeed, if a = b then Di(a, a). This in turn
implies D1−i(a, d) for some value d due to the second conjunct of γ2. Hence, there
would be pairs with the same first element in both relations, trivially violating the
first conjunct of γ2. Similarly, if Di(b, c) holds, then D1−i(c, d) needs to hold as well,
for some value d, leading again to a contradiction. Now, by the formula γ3, both
Ei(b, a) and Ei(a, c) hold, but Ei(b, c) does not. However, this clearly contradicts γ4.
As a consequence, D is necessarily functional.

Now, it is not hard to see that the above sentence ϕ (one for each fragment) is satisfiable
iff the domino instance on which the reduction is based on is solvable. Indeed, on the one
hand, every compatible tiling ð : N× N→ T of a tiling system 〈T,H ,V 〉 induces a grid
model that trivially satisfies ϕ. On the other hand, a model of ϕ necessarily embed a
grid whose points are labelled by tiles satisfying the horizontal and vertical relations.

Theorem 15. The formula satisfiability problems of the non-recursive STO, SATC, STEC,
STEO′, and SZATE fragments of SCL are undecidable, even with a bounded (at least 4, 3,
4, 4, and 8, respectively) number of binary relations.

Proof. The proof of this theorem builds on top of the one of the previous result, by
showing that, with the addition of the transitive closure operator, we can encode the
solution of a domino problem as the existence of a constant satisfying the following SCL
formula ψ(x), where the relation symbols H and V and the tiling and grid formulae ψtT
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and ψG are defined as in Theorem 14:

ψ(x),

(∨
t∈T

isA(x, t)

)

∧ ∀y.

(
(∃z. (H(x, z))∗ ∧ (V(z, y))∗)→

(∧
t∈T

isA(y, t)→ (ψtT (y) ∧ ψG(y))

))
.

Intuitively, the formula ψ(x) is satisfied by a constant c if this element is labelled by a tile
in T and every other element y, reachable from c via an arbitrary numbers of horizontal
steps followed by another arbitrary number of vertical steps, satisfies both the tiling
and grid formulae. Obviously, ψ(x) is satisfied at the root of a grid model induced by a
compatible tiling ð : N× N→ T of a tiling system 〈T,H ,V 〉. Indeed, every node in the
grid is reachable from the root by following a first-horizontal then-vertical path. Moreover,
its labelling is coherent with what is prescribed by the two matching relations H and
V , so, ψtT (y) necessarily holds at every node of the grid. Vice versa, every structure
satisfying ψ(c) induces a compatible tiling, as the set of elements reachable from c form a
grid, due to the formula ψG, and are suitably labelled thanks to the formula ψtT .

We now prove the undecidability of the non-recursive SE fragment of SCL. Observe
that, even if this statement directly subsumes some of the results reported in Theorems 14
and 15, it does so in a weak way, as the family of sentences defined in the reduction below
does require an unbounded number of binary relations.

Theorem 16. The satisfiability problem for both sentences and formulae of the non-
recursive SE fragment of SCL is undecidable.

Proof. It has been proved that the subsumption problem of role-value maps in description
logic is undecidable [53], via a reduction from the word problem of groups. This specific
problem can be formalised by means of a constraint-satisfaction problem as follows, where
we consider the n binary relations {Ri | i∈ [1, n]} and the 2(m+ 1) binary relations {Pi, Qi
| i∈ [0,m]} as vocabulary.

Problem 1. Decide whether the set of constraints {P0 6= Q0} ∪ {Pi = Qi | i ∈ [1,m]} is
satisfiable, under the proviso that, for all i ∈ [0,m], it holds that Pi = Rj1Pi

◦ . . . ◦ R
j
kPi
Pi

and

Qi=Rj1Qi
◦ . . . ◦ R

j
kQi
Qi

, for some j1
Pi
, . . . , j

kPi
Pi
∈ [1, n] and j1

Qi
, . . . , j

kQi
Qi
∈ [1, n], with kPi , kQi ∈N.

The author of [53] has shown that the above problem can be encoded in ALC extended
with role composition, by considering an additional binary relation R as technical device. By
unravelling the FOL semantics of this encoding, we obtain the reduction of the problem
to the (un)satisfiability of the formula ψ(x), (

∧n
i=1 δi(x)) ∧ (¬ψ0(x) ∧

∧m
i=1 ψi(x)) ∧∧m

i=0 (γPi(x)∧γQi(x)), whose components are defined as follows, with Z∈{Pi, Qi | i∈ [0,m]}:

δi(x), ∀y. ((∃z. R(x, z) ∧ Ri(z, y))↔ R(x, y));

ψi(x), ∀y. R(x, y)→ (∀z. Pi(y, z)↔ Qi(y, z));

γZ(x), ∀y. R(x, y)→ (∀z. γZ(y, z)↔ Z(y, z));

γZ(y, z), ∃wkZ−1.
(
. . .
(
∃w1. Rj1Z (y, w1) ∧ Rj2Z (w1, w2)

)
. . .
)
∧ R

j
kZ
Z

(wkZ−1, z).
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Now, it is evident that ψi(x) just uses the E construct, while δi(x) and γZ(x) exploit
both the S and E constructs. No other special construct is applied, thus, the formula ψ(x)
belongs to the non-recursive SE fragment of SCL.

Intuitively, the conjunct (¬ψ0(x) ∧
∧m
i=1 ψi(x)) models the set of constants {P0 6=

Q0} ∪ {Pi = Qi | i ∈ [1,m]}, while
∧m
i=0 (γPi(x)∧γQi(x)) ensures the side conditions

Pi = Rj1Pi
◦ . . . ◦ R

j
kPi
Pi

and Qi = Rj1Qi
◦ . . . ◦ R

j
kQi
Qi

. Finally, the conjunct (
∧n
i=1 δi(x)) is a

technical expedient to guarantee the correctness of the reduction.
At this point, Theorem 3.5 and, in particular, Lemma 3.1 of [53] guarantee the

undecidability of the class of formulae just described. As a consequence, the formula
satisfiability problem for the non-recursive SE fragment is necessarily undecidable. The
same holds for the sentence satisfiability problem, by considering the non-recursive SE

sentence Σ(c) ∧ ∀x.Σ(x)↔ ψ(x).

8. Conclusion

In this article we have studied the satisfiability and containment problems for SHACL
documents and shape constraints. In order to do so, we examined several recursive
semantics proposed in the literature and proved that they all coincide for non-recursive
documents. We also proved that partial assignments semantics reduces to total assign-
ments, and focused on the latter. We then provided a complete translation between:
(1) non-recursive SHACL and SCL, a new fragment of first-order logic extended with
counting quantifiers and transitive closure, (2) recursive SHACL and MSCL, an exten-
sion of SCL into a monadic second-order logic, where shape names become monadic
second-order variables. These translations into mathematical logic are effective since,
firstly, they offer a standard framework to model the language, contrary to previous ad hoc
modellings, and, secondly, they allow us to study several formal properties: from capturing
the semantics of filters (that have not been addressed in literature before), to laying out a
detailed map of SHACL fragments for which we are able to prove (un)decidability along
with complexity results, for our decision problems. We also expose semantic properties and
asymmetries within SHACL which might inform a future update of the W3C language
specification. Although the satisfiability and containment problems are both undecidable
for the full SHACL, decidability can be achieved by restricting the usage of certain
SHACL components, such as cardinality restrictions over shape or path properties.

Nevertheless, the status of some weak fragments of SHACL, such as O and S C, as
well as the finite-satisfiability problem for the SE, SO, SAC, SEC, SEO′, and SZAE fragments
remains an open question worthy of further investigation.
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Appendix A. Translation from SHACL to SCL

In this section we present our translation τ(M) from a SHACL document M (a
set of SHACL shape definitions) into sentences of our SCL grammar. For the sake of
completeness, we define our translation τ , for any SHACL document. However, it should
be noted that within SHACL, the same constraint can sometimes be expressed with
syntactically different, but semantically equivalent expressions. This syntactic detail is
not relevant to our analysis of SHACL, which is focused on semantics. Nevertheless,
our formulation of Theorem 3 requires us to work with a “standardised” syntactic
representation of SHACL documents. Thus, we restrict ourselves to standardised SHACL
documents, that we will define next. In essence, a standardised SHACL document restricts
the usage of these syntactic variations without affecting generality. Given any SHACL
document, it is always possible to transform it into a standardised one in linear size and
time.

Definition 20. A standardised SHACL document is a SHACL document that has the
following properties:

1. all shape names are identified by IRIs (instead of blank nodes);

2. it does not contain the following terms: sh:qualifiedValueShapesDisjoint, sh:in,
sh:class, sh:minCount, sh:maxCount, sh:qualifiedMaxCount, sh:and, sh:or, and
sh:xone;

3. it does not contain triples with a subject that is a property shape, and a predicate
that is one of the following: sh:hasValue, sh:datatype, sh:nodeKind, sh:pattern,
sh:node, sh:property, sh:minExclusive, sh:minInclusive, sh:maxExclusive,
sh:maxInclusive, sh:maxLength, sh:minLength and sh:not;

4. triples with sh:languageIn as the property contain a list with a single element as
the object;

The translation into SCL grammar of a document M is
∧

s∈M τ(s), where τ(s) is the
translation of a single SHACL shape s in M . Given a shape 〈s, t, d〉, its translation τ(〈s,
t, d〉) the following, where τt,s and τd,s are, respectively, the target and constraint axioms
of the shape.

τ(〈s, t, d〉) = τt,s ∧ τd,s
The translation of axiom τt,s is defined in Table 3 if t is not empty, or else it is >. We

do not discuss implicit class-based targets, as they just represent a syntactic variant of
class targets. The translation τd,s is the following, where τ(x, s, d) is the unary formula
that models the constraints d of shape s.

τd,s = Σs(x)↔ τ(x, s, d)

In the reminder of this section we define how to compute τ(x, s, d). The constraints of
d of a shape s in a SHACL document M , is the set of triples that (1) have s as the subject
in the RDF graph representing M , or (2) define property paths or lists of elements. As
convention, we use c as an arbitrary constant and C as an arbitrary list of constants. We
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use s, s′ and s
′′

as shape names, and S̄ as a list of shape names. Variables are defined as
x, y and z. Arbitrary paths are identified with r.

The translation of the constraints of a shape τ(x, s, d) is defined in two cases as follows.
The first case deals with the property shapes, which must have exactly one value for the
sh:path property. The second case deals with node shapes, which cannot have any value
for the sh:path property. Recall that we use notation <s, p, o> to represent an RDF
triple with subject S, predicate p and object o.

τ(x, s, d) = > ∧


∧
∀<s,y,z>∈d τ2(x, r,<s, y, z>)

if ∃r.<s, sh:path, r>) ∈ d∧
∀<s,y,z>∈d τ1(x,<s, y, z>)

otherwise

Next, we define the translations τ1 of node shapes triples, τ2 of property shape triples
and τ3 of property paths.

Appendix A.1. Translation of Node Shape Triples

The translation of τ1(x,<s, y, z>) is split in the following cases, depending on the
predicate of the triple. In case none of those cases are matched τ1(x,<s, y, z>)

.
= >.

The latter ensures that any triple not directly described in the cases below does not alter
the truth value of the conjunction in the definition of τ(x, s).

• τ1(x,<s, sh:hasValue, c>)
.
= x = c .

• τ1(x,<s, sh:in, C>)
.
=
∨

c∈C x = c .

• τ1(x,<s, sh:class, c>)
.
= ∃y.isA(x, y) ∧ y = c .

• τ1(x,<s, sh:datatype, c>))
.
= F dt=c(x) .

• τ1(x,<s, sh:nodeKind, c>)
.
= F IRI(x) if c =sh:IRI; F literal(x) if

c =sh:Literal; F blank(x) if c =sh:BlankNode. The translations for a c that equals
sh:BlankNodeOrIRI, sh:BlankNodeOrLiteral or sh:IRIOrLiteral are trivially con-
structed by a conjunction of two of these three filters.

• τ1(x,<s, sh:minExclusive, c>)
.
= x > c if order is an interpreted relation, else

F>c(x).

• τ1(x,<s, sh:minInclusive, c>)
.
= x ≥ c if order is an interpreted relation, else

F≥c(x).

• τ1(x,<s, sh:maxExclusive, c>)
.
= x < c if order is an interpreted relation, else

F<c(x).

• τ1(x,<s, sh:maxInclusive, c>)
.
= x ≤ c if order is an interpreted relation, else

F≤c(x).

• τ1(x,<s, sh:maxLength, c>)
.
= F maxLength=c(x) .

• τ1(x,<s, sh:minLength, c>)
.
= F minLength=c(x) .
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• τ1(x,<s, sh:pattern, c>)
.
= F pattern=c(x) .

• τ1(x,<s, sh:languageIn, C>)
.
=
∨

c∈C F
languageTag = c(x) .

• τ1(x,<s, sh:not, s′>)
.
= ¬Σs′(x) .

• τ1(x,<s, sh:and, S̄>)
.
=
∧

s′∈S̄ Σs′(x) .

• τ1(x,<s, sh:or, S̄>)
.
=
∨

s′∈S̄ Σs′(x) .

• τ1(x,<s, sh:node, s′>)
.
= Σs′(x) .

• τ1(x,<s, sh:property, s′>)
.
= Σs′(x) .

Appendix A.2. Translation of Property Shapes

The translation of τ2(x, r,<s, y, z>) is split in the following cases, depending on the
predicate of the triple. In case none of those cases are matched τ2(x, r,<s, y, z>)

.
= >.

• τ2(x, r,<s, sh:hasValue, c>)
.
= ∃y.r(x, y) ∧ τ1(y,<s, sh:hasValue, c>)

• τ2(x, r,<s, p, c>)
.
= ∀y.τ3(x, r, y))→ τ1(y,<s, p, c>), if p equal to one of the fol-

lowing: sh:class, sh:datatype, sh:nodeKind, sh:minExclusive, sh:minInclusive,
sh:maxExclusive, sh:maxInclusive, sh:maxLength,
sh:minLength, sh:pattern, sh:not, sh:and, sh:or, sh:xone, sh:node,
sh:property, sh:in .

• τ2(x, r,<s, sh:languageIn, C>)
.
=

∀y.τ3(x, r, y))→ τ1(y,<s, sh:languageIn, C>) .

• τ2(x, r,<s, sh:uniqueLang, true>)
.
=
∧

c∈L ¬∃≥2y.r(x, y) ∧ F lang=c(y)

where L = {c|c ∈ C ∧ ∃s′
.<s

′
, sh:languageIn, C> ∈ M} ∪ {cuniqueL} and cuniqueL

is a fresh unique constant. This translation is possible because sh:languageIn is
the only constraint that can force language tags constraints on literals.

• τ2(x, r,<s, sh:minCount, c>)
.
= ∃≥cy.τ3(x, r, y)) .

• τ2(x, r,<s, sh:maxCount, c>)
.
= ¬∃≤cy.τ3(x, r, y)) .

• τ2(x, r,<s, sh:equals, c>)
.
= ∀y.τ3(x, r, y)↔ τ3(x, c, y) .

• τ2(x, r,<s, sh:disjoint, c>)
.
= ¬∃y.τ3(x, r, y) ∧ τ3(x, c, y) .

• τ2(x, r,<s, sh:lessThan, c>)
.
= ∀y, z.τ3(x, r, y) ∧ τ3(x, c, z)→ y < z .

• τ2(x, r,<s, sh:lessThanOrEquals, c>)
.
= ∀y, z . τ3(x, r, y) ∧ τ3(x, c, z)→ y ≤ z .

• τ2(x, r,<s, sh:qualifiedValueShape, s′>)
.
= α ∧ β , where α and β are de-

fined as follows. Let S
′

be the set of sibling shapes of s if M contains <s,
sh:qualifiedValueShapesDisjoint, true>, or the empty set otherwise.
Let ν(x) = Σs′(x)

∧
∀s′′∈S′ ¬Σs

′′ (x). If triple <s, sh:qualifiedMinCount, c> is
contained in M , then α is equal to ∃≥cy.τ3(x, r, y) ∧ ν(x), otherwise α is equal
to >. If M contains the triple <s, sh:qualifiedMaxCount, c>, then β is equal to
¬∃≤cy.τ3(x, r, y) ∧ ν(x), otherwise β is equal to >.
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• τ2(x, r,<s, sh:closed, true>)
.
=

∧
∀R∈Θ ¬∃y.R(x, y) if Θ is not empty, or else

>, where Θ is defined as follows. Let Θall be the set of all relation names in M ,
namely Θall = {R|<x,R, y> ∈ M}. If this FOL translation is used to compare
multiple SHACL documents, such in the case of deciding containment, then Θall

must be extended to contain all the relation names in all these SHACL documents.
Let Θdeclared be the set of all the binary property names Θdeclared = {R|{<s,
sh:property, x>∧<x, sh:path, R)>} ⊆M}. Let Rclosed be a unique fresh relation
name, Θignored be the set of all the binary property names declared as “ignored”
properties, namely Θignored = {R|R ∈ R̄ ∧<s, sh:ignoredProperties, R̄> ∈ M},
where R̄ is a list of IRIs. The set Θ can now be defined as Θ = (Θall ∪ {Rclosed}) \
(Θdeclared ∪Θignored).

Appendix A.3. Translation of Property Paths

The translation τ3(x, r, y)) of any SHACL path r is given by the following cases. For
simplicity, we will assume that all property paths have been translated into an equivalent
form having only simple IRIs within the scope of the inverse operator. Using SPARQL
syntax for brevity, where the inverse operator is identified by the hat symbol ,̂ the
sequence path (̂r1/r2) can be simplified into r̂2/r̂1; an alternate path (̂r1 | r2) can be
simplified into r̂2 | r̂1. We can simplify in a similar way zero-or-more, one-or-more and
zero-or-one paths (̂r∗/+/?) into (̂ r)∗/+/?.

• If r is an IRI R, then τ3(x, r, y))
.
= R(x, y)

• If r is an inverse path, with r = “[ sh:inversePath R ]”, then
τ3(x, r, y))

.
= R−(x, y)

• If r is a conjunction of paths, with r = “( r1, r2, ..., rn )”, then τ3(x, r, y))
.
=

∃z1, z2, ..., zn−1. τ3(x, r1, z1)) ∧ τ3(z1, r2, z2)) ∧ ...
∧ τ3(zn−1, r2, y))

• If r is a disjunction of paths, with r = “[ sh:alternativePath ( r1, r2, ...,

rn ) ]”, then τ3(x, r, y))
.
= τ3(x, r1, y)) ∨ τ3(x, r2, y)) ∨ ... ∨ τ3(x, rn, y))

• If r is a zero-or-more path, with r = “[ sh:zeroOrMorePath r1]”, then τ3(x, r, y))
.
= (τ3(x, r1, y)))∗

• If r is a one-or-more path, with r = “[ sh:oneOrMorePath r1]”, then τ3(x, r, y))
.
=

∃z.τ3(x, r1, z)) ∧ (τ3(z, r1, y)))∗

• If r is a zero-or-one path, with r = “[ sh:zeroOrOnePath r1]”, then τ3(x, r, y))
.
=

x = y ∨ τ3(x, r1, y))

Appendix B. Translation from SCL to SHACL

In this section we present the translation τ−, inverse of τ , from sentences in the SCL
grammar into SHACL documents. We begin by defining the translation of the property
path subgrammar r(x, y) into SHACL property paths:

• τ−(R)
.
= R

47



• τ−(R−)
.
= [ sh:inversePath R ]

• τ−(r?(x, y))
.
= [ sh:zeroOrMorePath τ−(r(x, y)) ]

• τ−(x = y ∨ r(x, y))
.
= [ sh:zeroOrOnePath τ−(r(x, y)) ]

• τ−(r1(x, y) ∨ r2(x, y))
.
= [ sh:alternativePath ( τ−(r1(x, y)),

τ−(r2(x, y)) ] )

• τ−(r1(x, y) ∧ r2(x, y))
.
= ( τ−(r1(x, y)), τ−(r2(x, y)) )

The translation of the constraint subgrammar ψ(x) is the following. we will use
τ−(ψ(x)) to denote the SHACL translation of shape ψ(x), and ι(τ−(ψ(x))) to denote
the IRI corresponding to its shape name. To improve legibility, we omit set brackets
around sets of RDF triples, and we represent them in Turtle syntax. For example, a set
of RDF triples such as “s a sh:NodeShape ; sh:hasValue c . ” is to be interpreted as
the set {〈s, rdf:type, sh:NodeShape〉, 〈s, sh:hasValue, c〉}. When alternative translations
are possible, the one listed first takes precedence. In other words, a translation in the
following list is applied to a formula only if no translation listed before it are applicable.

• τ−(>)
.
=

s a sh:NodeShape .

• τ−(x = c)
.
=

s a sh:NodeShape ;

sh:hasValue c .

• τ−
(∧

c∈L ¬∃≥2y.r(x, y) ∧ F lang=c(y)
)
, where cuniqueL ∈ L

s a sh:PropertyShape ;

sh:path r ;

sh:uniqueLang true .

• τ−(F (x))
.
=

s a sh:NodeShape ;

f C .

Predicate f and the RDF term C is the filter function identified by F , namely one
of the following: sh:datatype, sh:nodeKind, sh:minExclusive, sh:minInclusive,
sh:maxExclusive, sh:maxInclusive, sh:maxLength,
sh:minLength, sh:pattern, sh:languageIn. Depending on the type of the filter, C
could be a literal, an IRI, or an RDF list with a single element.

• τ−(Σs′(x))
.
=

s a sh:NodeShape ;

sh:node s′ .

if s′ is a node shape, else:
s a sh:NodeShape ;

sh:property s′ .

• τ−
(∧
∀R∈Θ ¬∃y.R(x, y)

)
where Θ is a set of property relation names that includes

Rclosed, and Θlist is the RDF list representation of all the property relation names
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in the SCL formula that are not in Θ
s a sh:PropertyShape ;

sh:close true ;

sh:ignored Θlist.

• τ−(¬ψ(x))
.
=

s a sh:NodeShape ;

sh:not ι(τ−(ψ(x))) .

• τ−(ψ1(x) ∧ ψ2(x))
.
=

s a sh:NodeShape ;

sh:and (ι(τ−(ψ1(x))), ι(τ−(ψ2(x)))) .

• τ−(∃≥ny.r(x, y) ∧ ψ(y))
.
=

s a sh:PropertyShape ;

sh:path τ−(r(x, y)) ;

sh:qualifiedValueShape ι(τ−(ψ(y))) ;

sh:qualifiedMinCount n .

• τ−(∀y.r(x, y)↔ R(x, y))
.
=

s a sh:PropertyShape ;

sh:path τ−(r(x, y)) ;

sh:equals R .

• τ−(¬∃y.r(x, y) ∧R(x, y))
.
=

s a sh:PropertyShape ;

sh:path τ−(r(x, y)) ;

sh:disjoint R .

• τ−(∀y, z.r(x, y) ∧R(x, z)→ y < z)
.
=

s a sh:PropertyShape ;

sh:path τ−(r(x, y)) ;

sh:lessThan R .

• τ−(∀y, z.r(x, y) ∧R(x, z)→ y ≤ z) .
=

s a sh:PropertyShape ;

sh:path τ−(r(x, y)) ;

sh:lessThanOrEquals R .

We now define the translation τ−(ϕ) of a complete sentence of the ϕ-grammar into a
SHACL document M as follows.

• τ−(ϕ1 ∧ ϕ2)
.
= τ−(ϕ1) ∪ τ−(ϕ2))

• τ−(Σs(c))
.
= s sh:targetNode c.

• τ−(∀x. isA(x, c)→ Σs(x))
.
= s sh:targetClass c.

• τ−(∀x, y. R(x, y)→ Σs(x))
.
= s sh:targetSubjectsOf R .

• τ−(∀x, y. R−(x, y)→ Σs(x))
.
= s sh:targetObjectsOf R .

• τ−
(
Σs(x)↔ ψ(x)

) .
= τ−(ψ1(x)) such that s = ι(τ−(ψ1(x))) .
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